• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 155
  • 87
  • 19
  • 14
  • 12
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 357
  • 64
  • 46
  • 41
  • 38
  • 34
  • 30
  • 28
  • 27
  • 25
  • 24
  • 23
  • 23
  • 22
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Mapping vulnerability of infrastructure to destruction by slope failures on the Island of Dominica, WI a case study of Grand Fond, Petite Soufriere, and Mourne Jaune /

Andereck, Zachary Dean. January 2007 (has links)
Thesis (M.A.)--Miami University, Dept. of Geography, 2007. / Title from first page of PDF document. Includes bibliographical references (p. 67-72).
92

Hillslope Dynamics in the Paonia-McClure Pass Area, Colorado, USA

Regmi, Netra Raj 2010 August 1900 (has links)
Mass movement can be activated by earthquakes, rapid snowmelt, or intense rainstorms in conjunction with gravity. Whereas mass movement plays a major role in the evolution of a hillslope by modifying slope morphology and transporting material from the slope to the valley, it is also a potential natural hazard. Determining the morphology of the mountain slopes and the relationships of frequency and magnitude of landslides are fundamental to understanding the role of landslides in the study of landscape evolution, and hazard assessment. Characteristics of the geomorphic zones in a periglacial landscape were evaluated by plotting local slopes and the drainage areas in Paonia-McClure Pass area of western Colorado. The study suggested that the steepness and concavity of mountain slopes and stream channels in the study area are related by an exponential equation. Seven hundred and thirty five shallow landslides (<160,000 m2) from the same study area were mapped to determine the frequency-magnitude relationships of shallow landslides and to develop an optimum model of mapping susceptibility to landslides. This study suggests that the frequency-magnitude of the landslides in Paonia-McClure Pass area are related by a double pareto equation with values α= 1.1, and β = 1.9 for the exponents. The total area of landslides is 4.8x10⁶ m² and the total volume of the landslides is 1.4x10⁷ m³. The areas (A) and the volumes (V) of landslides are related by V = 0.0254xA^1.45. The frequency-magnitude analysis shows that landslides with areas ranging in size from 1,600 m2 - 20,000 m2 are the most hazardous landslides in the study area. These landslides are the most frequent and also do a significant amount of geomorphic work. Three quantitative approaches: weight of evidence; fuzzy logic; and logistic regression; were employed to develop models of mapping landslides in western Colorado. The weight of evidence approach predicted 78 percent of the observed landslides, the fuzzy-logic approach also predicted 78 percent of the observed landslides, and the logistic regression approach predicted 86 percent of the observed landslides.
93

Designing institutions for inter-agency cooperation: a study of landslide management in Hong Kong

陳素娥, Chan, So-ngor. January 2001 (has links)
published_or_final_version / Politics and Public Administration / Master / Master of Philosophy
94

Hillslope response to climate-modulated river incision and the role of deep-seated landslides in post-glacial sediment flux: Waipaoa Sedimentary System, New Zealand

Bilderback, Eric Leland January 2012 (has links)
Quantifying how hillslopes respond to river incision and climate change is fundamental to understanding the geomorphic evolution of tectonically uplifting landscapes during glacial-interglacial cycles. Hillslope adjustment in the form of deep-seated bedrock landslides can account for a large proportion of the regional sediment yield and denudation rates for rapidly uplifting landscapes. However, the timing and magnitude of the response of hillslopes to climatic and tectonic forcing in moderate uplift temperate maritime catchments characteristic of many active margins worldwide is not well quantified. This study seeks to investigate how hillslopes respond to climate-modulated river incision and to quantify the magnitude of the sediment flux from this response in a typical active margin setting. The non-glacialWaipaoa Sedimentary System (WSS) on the East Coast of the North Island of New Zealand consists of river catchments, coastal foothills to uplifting mountain ranges, and terrestrial and marine sediment depocentres collectively underlain by relatively young (Cretaceous and younger) sedimentary rocks within a tectonically active setting and temperate maritime climate. These attributes make theWSS similar to many coastal catchments on oceanic-continental convergent margins worldwide. However, because of widespread destruction of primary forests for conversion to pasture lands by the mid 20th Century, theWSS is currently a globally significant source of sediment to the world’s oceans. Because of these factors, theWSS was selected as one of two global study sites for the international, NSF supported, MARGINS Source-to-Sink initiative designed to investigate the transfer of sediment from terrestrial source to marine sink. Previous studies on theWSS have shown a strong link between climate change and geomorphic response in the system. River incision since the last glacial coldest period has generated a significant amount of topography, leaving small remnants of the ca.18,000 cal. yr BP last glacial aggradation terrace scattered up to 120 m above modern rivers. In this study, the hillslope response to river incision is quantitatively examined using new high resolution topographic data sets (lidar and photogrammetry) in combination with 3 field mapping and tephrochronology. Hillslopes are found to be coupled to river incision and adjusted to rapid incision through the initiation and reactivation of deep-seated landslides. In the erodible marine sedimentary rocks of the terrestrialWSS, post-incision deep-seated landslides can occupy over 30% of the surface area. Many of these slides show evidence of multiple “nested” failures and landslide reactivation. The ages of tephra cover beds identified by electron microprobe analysis show that following an initial 4,000 to 5,000 year time lag after the initiation of river incision, widespread hillslope adjustment started between the deposition of the ca. 13,600 cal. yr BPWaiohau tephra and the ca. 9,500 cal. yr BP Rotoma tephra. Tephrochronology and geomorphic mapping analysis indicates that river incision and deep-seated landslide slope adjustment is synchronous between mainstem rivers and headwater tributaries. Tephrochronology further shows that many slopes have continued to adjust to channel incision into the late Holocene. Hillslope response in the catchment can involve the entire hillslope from river to ridgeline, with some interfluves between incising sub-catchments being dramatically modified through ridgeline retreat and/or lowering. Using the results of the landform tephrochronology and geomorphic mapping, a conceptual time series of hillslope response to uplift and climate change-induced river incision is derived for a timeframe encompassing the last glacial-interglacial cycle. Using the same high resolution topography datasets, in-depth field analysis, and tephrochronology, the 18,000 year sediment yield from terrestrial deep-seated landslides in theWSS is estimated in order to investigate the magnitude of hillslope response to climate-modulated, uplift driven river incision. This completes one of the first processbased millennial time-scale sediment budgets for this class of temperate maritime, active margin catchments. Fluvial and geomorphic modelling is applied to reconstruct pre 18,000 cal. yr BP topography in 141 km2 of detailed study area and the resulting volumetric estimates from 207 landslides are used to estimate deep-seated landslide sediment flux for the broader system. An estimated 10.2 km3 of deep-seated landslidederived sediment with a multiplicative uncertainty of 1.9 km3 (+9.2 km3, -4.8 km3) was delivered to terrestrial and marine sinks. This accounts for between 10 and 74% of the total mass of the terrestrialWSS budget of ca. 91,000 Mt (+37,000 Mt, -26,000 Mt). Combining the deep-seated landslide results with other studies of terrestrial sediment sources and terrestrial and shelf sinks, the estimated terrestrial source load ranges from 4 Abstract 1.2 to 3.7 times larger than the mass of sediment sequestered in terrestrial and shelf depocentres. This implies that off-shelf transport of sediment is important in this system over the last 18,000 cal. yr BP, as it is today for anthropogenic reasons. Based on the derived sediment budget, the denudation rate for the terrestrialWSS of 0.8 mm yr-1 (+0.3 mm yr-1, -0.2 mm yr-1) is indistinguishable from the average terrestrialWaipaoa late Quaternary uplift rate, indicating an approximate steady-state balance between denudation and uplift. This thesis provides a quantitative analysis of the role of deepseated landslides in an active margin catchment that is used to improve the understanding of landscape and terrestrial source-to-marine-sink sediment transfer dynamics.
95

Vulnerabilidade associada a precipitações e fatores antropogenicos no municipio de Guaruja (SP) : periodo de 1965 a 2001 / Vulnerability associated to precipitations and anthropogenic factors on Guaruja city (Sao Paulo-Brazil) : period from 1965 to 2001

Araki, Ricardo, 1966- 08 August 2007 (has links)
Orientadores: Luci Hidalgo Nunes, Francisco Sergio Bernardes Ladeira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociencias / Made available in DSpace on 2018-08-09T02:44:22Z (GMT). No. of bitstreams: 1 Araki_Ricardo_M.pdf: 5937927 bytes, checksum: 8427b48ec817f8de5fa5dcb11889b4dd (MD5) Previous issue date: 2007 / Resumo: Foram observados os padrões temporo-espaciais da distribuição da precipitação pelo período de 1991 a 2001, associando essas informações com os registros de escorregamentos por meio de dados obtidos em periódicos locais e fornecidos pela Defesa Civil Municipal. Esses resultados foram comparados com estudo similar desenvolvido para o período de 1965 a 1988, trabalho conjunto pelo Instituto Geológico e Instituto de Pesquisas Tecnológicas, encomendado pelo governo do estado de São Paulo. Os resultados mostram um aumento substancial na quantidade de escorregamentos associados a episódios pluviais no município de Guarujá no período mais recente (1991-2001): 496, contra 81 no período anterior (1965-1988). Além disso, as ocorrências mais atuais foram deflagradas por totais pluviométricos diários até menores. Atribui-se esse quadro à alteração de atributos naturais que conferiam maior estabilidade ao local, tais como vegetação e modificação na morfologia pela intensificação da ação antrópica (obras civis, de infra-estrutura e moradia, entre outros). Isso tem ampliado a instabilidade do lugar e a vulnerabilidade das parcelas da população que vivem nessas áreas de risco. Os meses mais chuvosos, correspondentes aos do verão, típico do regime tropical úmido são os que também registram mais escorregamentos, mas o estudo indica a necessidade de se considerar a escala diária. Os dois casos estudados que induziram 60 e 35 deslizamentos em um só dia (19 de fevereiro de 1993 e 25 de março de 1991, respectivamente) indicam de que as precipitações convectiva e frontal (provavelmente associadas à ZCAS) são as causas principais para o desenvolvimento de escorregamentos no local / Abstract: Space and time patterns of precipitation in Guarujá were observed from 1991 to 2001 and associated with landslides, using data of the Municipal Civil Defense and local periodicals. Results were compared with another research developed for the period of 1965 to 1988 developed by the Geological Institute and the Technological Research Institute, requested by the State of Sao Paulo Government. Results showed a substantial increase of mass movements associated with pluvial episodes in the city of Gurauja in the most recent period (1991-2001): 496, against 81 in the previous period (1965-1988). Moreover, the most recent events were caused by lower daily pluviometrical rates. This situation is attributed to the alteration of natural components which promoted more stability to the area, such as vegetation and morphology, which were caused by the anthropogenic intensification (infrastructure constructions, dwelling buildings, among others). This fact had increased the instability of the area and the vulnerability of some population segments that live in the risky areas. The rainiest months, in summer (typical of tropical humid regimen), record more landslides, however the study points out the importance of the daily scale for this kind of investigations. Two case studies which induced 60 and 35 landslides events in one single day (respectively on February 19th, 1993 and March 25th, 1991) indicate that both the convective and frontal precipitations (probably associated to ZCAS) are important to trigger mass movements in the area / Mestrado / Mestre em Geografia
96

Climate Change Impact on Rainfall-Induced Landslides in Ottawa Sensitive Marine Clays

Panikom, Nattawadee 18 September 2020 (has links)
The City of Ottawa is situated in an area known as the Champlain Sea, 17,000 years before present (BP) the entire area was covered with sea water. This area deposited marine clays which are known to be highly sensitive. The City of Ottawa needs to expand land use to allow for the expansion of infrastructure and housing to support its growth. This study is intended to assist the City of Ottawa’s geotechnical engineers in their decision-making by identifying future sensitive areas prone to landslides due to rainfall based on future climate model data. The project incorporates rainfall intensities from downscaled climate model data in the Transient Rainfall Infiltration and Grid-based Regional Slope-Stability (TRIGRS) model to investigate areas sensitive to landslides, then within a GIS platform, the future landslide susceptibility maps were created based on Factor of Safety (FS) values showing the areas prone to landslides. The data input for the model includes climate model data, topography, hydrogeology, geology and geophysical data obtained from a previous study. These data were prepared using ArcGIS software and converted into ascii format for TRIGRS model. The model was calibrated using historical rainfall intensities and validated by comparing to historical landslide areas. Sensitivity analysis were performed to ranges of geotechnical properties found within sensitive marine clays in the area to find the values best to create the ideal scenario, normal scenario and worst-case model scenario for the prediction. Rainfall intensities from projected climate data Intensities Duration Frequency (IDF) of 10 years and 50 years returning period and rainfall intensities of 12 hr, 24 hr, and 48 hr were selected for the model. Results from simulations find the projected climate rainfall intensity do not have impact or has minimal impact to slope stability in sensitive marine clay areas in Ottawa directly. However, higher rainfall runoff is expected from projected rainfall RCP8.5 than the RCP4.5. The infiltration rate remains constant throughout each simulation, which is the same value as the hydraulic conductivity. The time when the slope becomes unstable varies depending on initial water levels. Results from the ideal and normal scenario show no areas prone to slope failure after 48 hours of rainfall duration. However, the factor of safety decreases as the rainfall duration increases and is expected to decrease with longer rainfall durations. The worst-case scenario shows some areas prone to slope failure (FS < 1) with 2% probability of slope failure at 48 hours of rainfall duration. The distribution of these unstable areas are located along the Ottawa River, Rideau River, Carp River, Mississippi River and valleys along their tributaries, the majority of the area prone to slope instability from rainfall are in the east part of the City of Ottawa. While there are many uncertainties and limitations which contribute to the model results, this study is useful to engineers and planners in initial implementation of mitigation strategies to mitigate the damages and cost from landslides events. The susceptibility maps can also assist in decision making for planners in developing into these areas.
97

Landslide Inventory Mapping and Dating using LiDAR-Based Imagery and Statistical Comparison Techniques in Milo McIver State Park, Clackamas County, Oregon

Duplantis, Serin 01 January 2011 (has links)
A landslide inventory was conducted for the Redland and Estacada Quadrangles of western Oregon using LiDAR DEMs. Many of these landslides were field verified. In total, 957 landslides were mapped using LiDAR whereas previously, only 228 landslides were believed to exist in the study area based on SLIDO information. In Milo McIver State Park, 41 landslides were mapped using LiDAR. SLIDO indicated only three landslides present within the park. A sequence of seven terraces of the Clackamas River is mapped in Milo McIver State Park. Landslides in the park predominantly occur between these terraces. Soils studied from representative areas within landslide complexes and terrace surfaces help to formulate a soil chronosequence for the study area. The youngest soils, Entisols, develop in less than 1,600 years, Inceptisols between 1,600-10,000 years, and the oldest soils, Alfisols, develop in at least 10,000 years. Classifications of soil profiles netted ten Alfisols (mainly on upper terraces), 49 Inceptisols, and 20 Entisols (reactivated slides in the complexes). The soils are predominantly ML soils and have Loam and Silt Loam textures. Results of spectral analysis, carried out on the LiDAR DEMs, indicate that the spectral character of landslides changes with age. However, applying statistical tools such as the Kolmogorov-Smirnov test (K-S test) and cluster analysis suggest that it is not possible to use spectral analysis to determine the relative age of failed surfaces. The K-S test showed that the spectral character among landslides varies widely. Cluster analysis resulted groupings not based on age or terrain type. The result of the cluster analysis illustrates that it may not be realistic to use a single cutoff, which separates failed terrain from unfailed, in the spectral distributions to analyze an entire region. In all, the results of the spectral analysis were not conclusive. Individual landslides, not complexes, should be used in future studies, since complexes have slides that are continually reactivating. The landslides were also too young to display very much differentiation in age based on soils and spectral analysis. Essentially, a similar study should be conducted using individual landslides with a large age range for more conclusive results.
98

Cosmogenic dating of fluvial terraces in the Sorbas Basin, SE Spain

Ilott, Samantha January 2014 (has links)
Long term fluvial incision spanning the Late Cenozoic is recorded in many fluvial systems around the world by terrace landform sequences. The incision manifests itself as inset sequences of river terraces which form terrace staircases. The timing of the onset of incision and the rate incision then proceeds at is poorly constrained due to the difficulties in dating river terraces. This study applies the technique of cosmogenic exposure dating to a fluvial staircase, for the first time, in the Sorbas Basin, SE Spain. Cosmogenic exposure dating allows the timing of abandonment of the fluvial terraces to be calculated therefore recording periods of incision. Cosmogenic exposure dating and the profile method offer a viable way to date Early and Middle Pleistocene terrace deposits. Combined exposure and burial age’s approaches using paired isotopes allow for insights into terrace aggradation and fluvial incision timing. The fluvial deposits in the Sorbas Basin record 1.0 Ma of incision by the Río Aguas. The timing of aggradation and incision in the Sorbas basin has been linked to both tectonics and climate cycles. Terrace aggradation took place in glacial and interglacial periods. The abandonment of terrace surfaces occurred both at warming transitions and in interglacial periods. New uplift rates calculated for the Pleistocene fluvial system suggest that tectonic activity in the Sorbas Basin has been episodic. The south margin and centre of the Sorbas Basin has uplifted at a faster rate than the northern margin impacting on the rates of incision taking place in the fluvial systems. Overall tectonic uplift has increased the fluvial system sensitivity to climatic variations.
99

A framework of a national slope safety system for Malaysia

Jaapar, Abd Rasid Bin. January 2006 (has links)
published_or_final_version / abstract / Applied Geosciences / Master / Master of Science
100

Experimental study of shear behavior of soils with abundant coarse particles associated with slip zones of large landslides in the ThreeGorges reservoir, China

Li, Yanrong, 李彥榮 January 2009 (has links)
published_or_final_version / Earth Sciences / Doctoral / Doctor of Philosophy

Page generated in 0.0176 seconds