201 |
Codage de sources distribuées : Outils et Applications à la compression vidéoToto-Zarasoa, Velotiaray 29 November 2010 (has links) (PDF)
Le codage de sources distribuées est une technique permettant de compresser plusieurs sources corrélées sans aucune coopération entre les encodeurs, et sans perte de débit si leur décodage s'effectue conjointement. Fort de ce principe, le codage de vidéo distribué exploite la corrélation entre les images successives d'une vidéo, en simplifiant au maximum l'encodeur et en laissant le décodeur exploiter la corrélation. Parmi les contributions de cette thèse, nous nous intéressons dans une première partie au codage asymétrique de sources binaires dont la distribution n'est pas uniforme, puis au codage des sources à états de Markov cachés. Nous montrons d'abord que, pour ces deux types de sources, exploiter la distribution au décodeur permet d'augmenter le taux de compression. En ce qui concerne le canal binaire symétrique modélisant la corrélation entre les sources, nous proposons un outil, basé sur l'algorithme EM, pour en estimer le paramètre. Nous montrons que cet outil permet d'obtenir une estimation rapide du paramètre, tout en assurant une précision proche de la borne de Cramer-Rao. Dans une deuxième partie, nous développons des outils permettant de décoder avec succès les sources précédemment étudiées. Pour cela, nous utilisons des codes Turbo et LDPC basés syndrome, ainsi que l'algorithme EM. Cette partie a été l'occasion de développer des nouveaux outils pour atteindre les bornes des codages asymétrique et non-asymétrique. Nous montrons aussi que, pour les sources non-uniformes, le rôle des sources corrélées n'est pas symétrique. Enfin, nous montrons que les modèles de sources proposés modélisent bien les distributions des plans de bits des vidéos; nous montrons des résultats prouvant l'efficacité des outils développés. Ces derniers permettent d'améliorer de façon notable la performance débit-distorsion d'un codeur vidéo distribué, mais sous certaines conditions d'additivité du canal de corrélation.
|
202 |
Codes AL-FEC hautes performances pour les canaux à effacements : variations autour des codes LDPCCunche, Mathieu 01 March 2010 (has links) (PDF)
Nous assistons au développement rapide des solutions de diffusion de contenus sur des systèmes, où en plus des traditionnelles corruptions de l'information dans les couches basses, se pose le problème des pertes de paquets d'informations. Le besoin de fiabiliser ces systèmes de transmission a conduit à l'émergence de codes correcteurs d'effacements, qui grâce à l'ajout d'informations redondantes, permettent de reconstruire l'information perdue. Dans cette thèse nous abordons le problème de la conception de codes à effacements ayant de bonnes capacités de correction et dont les algorithmes de décodage possèdent une complexité permettant d'atteindre des débits élevés. Pour cela, nous avons choisi de travailler conjointement sur les codes et sur leur implémentation au sein d'un codec logiciel, et plus particulièrement sur les algorithmes de décodage. La première partie de nos travaux montre que des solutions basées sur les codes “Low-Density Parity-Check” (LDPC) permettent d'obtenir d'excellents résultats. En particulier lorsque ces codes sont décodés avec un décodeur hybride IT/ML qui permet d'obtenir des capacités de corrections proches de l'optimal, tout en conservant une complexité acceptable. De plus, nous montrons que grâce à l'utilisation de codes LDPC structurés la complexité du décodage ML peut être largement réduite. Nous étudions ensuite le développement de systèmes combinant un code à effacements et des fonctionnalités cryptographiques. Les systèmes résultants permettent de réduire la complexité globale du système tout en garantissant un niveau de sécurité élevé. Finalement, nous présentons une technique de tolérance aux fautes basée sur des codes correcteurs pour des applications de multiplications matricielles. Cette technique nous permet de construire un système de calcul distribué sur plateforme P2P tolérant efficacement aussi bien les pannes franches que les erreurs malicieuses.
|
203 |
Low-density Parity-Check decoding Algorithms / Low-density Parity-Check avkodare algoritmPirou, Florent January 2004 (has links)
<p>Recently, low-density parity-check (LDPC) codes have attracted much attention because of their excellent error correcting performance and highly parallelizable decoding scheme. However, the effective VLSI implementation of and LDPC decoder remains a big challenge and is a crucial issue in determining how well we can exploit the benefits of the LDPC codes in the real applications. In this master thesis report, following a error coding background, we describe Low-Density Parity-Check codes and their decoding algorithm, and also requirements and architectures of LPDC decoder implementations.</p>
|
204 |
An FPGA implementation of a modulator for digital terrestrial television according to the DTMB standard / FPGA-implementation av en modulator för marksänd digital television enligt DTMB-standardenAbrahamsson, Sebastian, Råbe, Markus January 2010 (has links)
<p>The increasing data rates in digital television networks increase the demands on data capacity of the current transmission channels. Through new standards, the capacity of exisiting channels is increased with new methods of error correction coding and modulation.</p><p>This thesis presents the design and implementation of a modulator for transmission of digital terrestrial television according to the Chinese DTMB standard.</p><p>The system is written in VHDL and is intended for implementation on an FPGA.</p>
|
205 |
Analyse et construction de codes LDPC non-binaires pour des canaux à évanouissementGorgolione, Matteo 25 October 2012 (has links) (PDF)
Au cours des 15 dernières années, des progrès spectaculaires dans l'analyse et la conception des codes définis par des graphes bipartites et décodables par des algorithmes itératifs ont permis le développement de systèmes de correction d'erreurs, avec des performances de plus en plus proches la limite théorique de Shannon. Dans ce contexte, un rôle déterminant a été joué par la famille des codes à matrice de parité creuse, appelés codes LDPC (pour " Low-Density Parity-Check ", en anglais), introduit par Gallager au début des années 60 et décrits plus tard en termes de graphes bipartites. Négligés pendant de longues années, ces codes ont été redécouverts à la fin des années 90, après que la puissance du décodage itératif a été mise en évidence grâce à l'invention des Turbo-codes. Ce n'est qu'au début des années 2000 que les techniques nécessaires à l'analyse et l'optimisation des codes LDPC ont été développées, techniques qui ont permis ensuite la construction des codes avec des performances asymptotiques proches de la limite de Shannon. Cette remarquable avancée a motivé l'intérêt croissant de la communauté scientifique et soutenu le transfert rapide de cette technologie vers le secteur industriel. Plus récemment, un intérêt tout particulier a été porté aux codes LDPC définis sur des alphabets non-binaires, grâce notamment à leur meilleure capacité de correction en " longueur finie ". Bien que Gallager ait déjà proposé l'utilisation des alphabets non-binaires, en utilisant l'arithmétique modulaire, les codes LDPC non-binaires définis sur les corps finis n'ont étés étudiés qu'à partir de la fin des années 90. Il a été montré que ces codes offrent de meilleures performances que leurs équivalents binaires lorsque le bloc codé est de longueur faible à modérée, ou lorsque les symboles transmis sur le canal sont eux-mêmes des symboles non- binaires, comme par exemple dans le cas des modulations d'ordre supérieur ou des canaux à antennes multiples. Cependant, ce gain en performance implique un coût non négligeable en termes de complexité de décodage, qui peut entraver l'utilisation des codes LDPC non binaires dans des systèmes réels, surtout lorsque le prix à payer en complexité est plus important que le gain en performance. Cette thèse traite de l'analyse et de la conception des codes LDPC non binaires pour des canaux à évanouissements. L'objectif principal de la thèse est de démontrer que, outre le gain en performance en termes de capacité de correction, l'emploi des codes LDPC non binaires peut apporter des bénéfices supplémentaires, qui peuvent compenser l'augmentation de la complexité du décodeur. La " flexibilité " et la " diversité " représentent les deux bénéfices qui seront démontrées dans cette thèse. La " flexibilité " est la capacité d'un système de codage de pouvoir s'adapter à des débits (rendements) variables tout en utilisant le même encodeur et le même décodeur. La " diversité " se rapporte à sa capacité d'exploiter pleinement l'hétérogénéité du canal de communication. La première contribution de cette thèse consiste à développer une méthode d'approximation de l'évolution de densité des codes LDPC non-binaires, basée sur la simulation Monte-Carlo d'un code " infini ". Nous montrons que la méthode proposée fournit des estimations très fines des performances asymptotiques des codes LDPC non-binaires et rend possible l'optimisation de ces codes pour une large gamme d'applications et de modèles de canaux. La deuxième contribution de la thèse porte sur l'analyse et la conception de système de codage flexible, utilisant des techniques de poinçonnage. Nous montrons que les codes LDPC non binaires sont plus robustes au poinçonnage que les codes binaires, grâce au fait que les symboles non-binaires peuvent être partialement poinçonnés. Pour les codes réguliers, nous montrons que le poinçonnage des codes non-binaires obéit à des règles différentes, selon que l'on poinçonne des symboles de degré 2 ou des symboles de degré plus élevé. Pour les codes irréguliers, nous proposons une procédure d'optimisation de la " distribution de poinçonnage ", qui spécifie la fraction de bits poinçonnés par symbole non-binaire, en fonction du degré du symbole. Nous présentons ensuite des distributions de poinçonnage optimisées pour les codes LDPC non binaires, avec des performances à seulement 0,2 - 0,5 dB de la capacité, pour des rendements poinçonnés variant de 0,5 à 0,9. La troisième contribution de la thèse concerne les codes LDPC non binaires transmis sur un canal de Rayleigh à évanouissements rapides, pour lequel chaque symbole modulé est affecté par un coefficient d'évanouissement différent. Dans le cas d'une correspondance biunivoque entre les symboles codés et les symboles modulés (c.-à-d. lorsque le code est définit sur un corps fini de même cardinalité que la constellation utilisée), certains symboles codés peuvent être complètement noyés dans le bruit, dû aux évanouissements profonds du canal. Afin d'éviter ce phénomène, nous utilisons un module d'entrelacement au niveau bit, placé entre l'encodeur et le modulateur. Au récepteur, le module de désentrelacement apporte de la diversité binaire en entrée du décodeur, en atténuant les effets des différents coefficients de fading. Nous proposons un algorithme d'entrelacement optimisé, inspirée de l'algorithme " Progressive Edge-Growth " (PEG). Ainsi, le graphe bipartite du code est élargi par un nouvel ensemble de nœuds représentant les symboles modulés, et l'algorithme proposé établit des connections entre les nœuds représentant les symboles modulés et ceux représentant les symboles codés, de manière à obtenir un graphe élargi de maille maximale. Nous montrons que l'entrelaceur optimisé permet d'obtenir un gain de performance par rapport à un entrelaceur aléatoire, aussi bien en termes de capacité de correction que de détection d'erreurs. Enfin, la quatrième contribution de la thèse consiste en un schéma de codage flexible, permettant d'atteindre la diversité maximale d'un canal à évanouissements par blocs. La particularité de notre approche est d'utiliser des codes Root-LDPC non binaires couplés avec des codes multiplicatifs non binaires, de manière à ce que le rendement de codage puisse facilement s'adapter au nombre de blocs d'évanouissement. Au niveau du récepteur, une simple technique de combinaison de diversité est utilisée en entrée du décodeur. Comme conséquence, la complexité du décodage reste inchangée quel que soit le nombre de blocs d'évanouissement et le rendement du code utilisé, tandis que la technique proposée apporte un réel bénéfice en termes de capacité de correction.
|
206 |
Coding Theorems via Jar DecodingMeng, Jin January 2013 (has links)
In the development of digital communication and information theory, every channel decoding rule has resulted in a revolution at the time when it was invented. In the area of information theory, early channel coding theorems were established mainly by maximum likelihood decoding, while the arrival of typical sequence decoding signaled the era of multi-user information theory, in which achievability proof became simple and intuitive. Practical channel code design, on the other hand, was based on minimum distance decoding at the early stage. The invention of belief propagation decoding with soft input and soft output, leading to the birth of turbo codes and low-density-parity check (LDPC) codes which are indispensable coding techniques in current communication systems, changed the whole research area so dramatically that people started to use the term "modern coding theory'' to refer to the research based on this decoding rule. In this thesis, we propose a new decoding rule, dubbed jar decoding, which would be expected to bring some new thoughts to both the code performance analysis and the code design.
Given any channel with input alphabet X and output alphabet Y, jar decoding rule can be simply expressed as follows: upon receiving the channel output y^n ∈ Y^n, the decoder first forms a set (called a jar) of sequences x^n ∈ X^n considered to be close to y^n and pick any codeword (if any) inside this jar as the decoding output. The way how the decoder forms the jar is defined independently with the actual channel code and even the channel statistics in certain cases. Under this jar decoding, various coding theorems are proved in this thesis. First of all, focusing on the word error probability, jar decoding is shown to be near optimal by the achievabilities proved via jar decoding and the converses proved via a proof technique, dubbed the outer mirror image of jar, which is also quite related to jar decoding. Then a Taylor-type expansion of optimal channel coding rate with finite block length is discovered by combining those achievability and converse theorems, and it is demonstrated that jar decoding is optimal up to the second order in this Taylor-type expansion. Flexibility of jar decoding is then illustrated by proving LDPC coding theorems via jar decoding, where the bit error probability is concerned. And finally, we consider a coding scenario, called interactive encoding and decoding, and show that jar decoding can be also used to prove coding theorems and guide the code design in the scenario of two-way communication.
|
207 |
An FPGA implementation of a modulator for digital terrestrial television according to the DTMB standard / FPGA-implementation av en modulator för marksänd digital television enligt DTMB-standardenAbrahamsson, Sebastian, Råbe, Markus January 2010 (has links)
The increasing data rates in digital television networks increase the demands on data capacity of the current transmission channels. Through new standards, the capacity of exisiting channels is increased with new methods of error correction coding and modulation. This thesis presents the design and implementation of a modulator for transmission of digital terrestrial television according to the Chinese DTMB standard. The system is written in VHDL and is intended for implementation on an FPGA.
|
208 |
Low-density Parity-Check decoding Algorithms / Low-density Parity-Check avkodare algoritmPirou, Florent January 2004 (has links)
Recently, low-density parity-check (LDPC) codes have attracted much attention because of their excellent error correcting performance and highly parallelizable decoding scheme. However, the effective VLSI implementation of and LDPC decoder remains a big challenge and is a crucial issue in determining how well we can exploit the benefits of the LDPC codes in the real applications. In this master thesis report, following a error coding background, we describe Low-Density Parity-Check codes and their decoding algorithm, and also requirements and architectures of LPDC decoder implementations.
|
209 |
Applications of Random Graphs to Design and Analysis of LDPC Codes and Sensor Networks19 August 2005 (has links)
This thesis investigates a graph and information theoretic approach to design and analysis of low-density parity-check (LDPC) codes and wireless networks. In this work, both LDPC codes and wireless networks are considered as random graphs. This work proposes solutions to important theoretic and practical open problems in LDPC coding, and for the first time introduces a framework for analysis of finite wireless networks.
LDPC codes are considered to be one of the best classes of error-correcting codes. In this thesis, several problems in this area are studied. First, an improved decoding algorithm for LDPC codes is introduced. Compared to the standard iterative decoding, the proposed decoding algorithm can result in several orders of magnitude lower bit error rates, while having almost the same complexity. Second, this work presents a variety of bounds on the achievable performance of different LDPC coding scenarios. Third, it studies rate-compatible LDPC codes and provides fundamental properties of these codes. It also shows guidelines for optimal design of rate-compatible codes. Finally, it studies non-uniform and unequal error protection using LDPC codes and explores their applications to data storage systems and communication networks. It presents a new error-control scheme for volume holographic memory (VHM) systems and shows that the new method can increase the storage capacity by more than fifty percent compared to previous schemes.
This work also investigates the application of random graphs to the design and analysis of wireless ad hoc and sensor networks. It introduces a framework for analysis of finite wireless networks. Such framework was lacking from the literature. Using the framework, different network properties such as capacity, connectivity, coverage, and routing and security algorithms are studied. Finally, connectivity properties of large-scale sensor networks are investigated. It is shown how unreliability of sensors, link failures, and non-uniform distribution of nodes affect the connectivity of sensor networks.
|
210 |
Applications of Random Graphs to Design and Analysis of LDPC Codes and Sensor NetworksPishro-Nik, Hossein 12 1900 (has links)
This thesis investigates a graph and information theoretic approach to design and analysis of low-density parity-check (LDPC) codes and wireless networks. In this work, both LDPC codes and wireless networks are considered as random graphs. This work proposes solutions to important theoretic and practical open problems in LDPC coding, and for the first time introduces a framework for analysis of finite wireless networks. LDPC codes are considered to be one of the best classes of error-correcting codes. In this thesis, several problems in this area are studied. First, an improved decoding algorithm for LDPC codes is introduced. Compared to the standard iterative decoding, the proposed decoding algorithm can result in several orders of magnitude lower bit error rates, while having almost the same complexity. Second, this work presents a variety of bounds on the achievable performance of different LDPC coding scenarios. Third, it studies rate-compatible LDPC codes and provides fundamental properties of these codes. It also shows guidelines for optimal design of rate-compatible codes. Finally, it studies non-uniform and unequal error protection using LDPC codes and explores their applications to data storage systems and communication networks. It presents a new error-control scheme for volume holographic memory (VHM) systems and shows that the new method can increase the storage capacity by more than fifty percent compared to previous schemes. This work also investigates the application of random graphs to the design and analysis of wireless ad hoc and sensor networks. It introduces a framework for analysis of finite wireless networks. Such framework was lacking from the literature. Using the framework, different network properties such as capacity, connectivity, coverage, and routing and security algorithms are studied. Finally, connectivity properties of large-scale sensor networks are investigated. It is shown how unreliability of sensors, link failures, and non-uniform distribution of nodes affect the connectivity of sensor networks.
|
Page generated in 0.3354 seconds