311 |
Σχεδιασμός συστήματος και εργαλείων με σκοπό την ανάπτυξη customized GUis για τον απομακρυσμένο DSP εφαρμογώνΚαραγεωργόπουλος, Δημήτριος 21 March 2011 (has links)
Σκοπός της παρούσας διπλωματικής εργασίας είναι η δημιουργία συστήματος που θα διευρύνει τις δυνατότητες των εξ’ αποστάσεως εργαστηρίων προσανατολισμένα σε θέματα ψηφιακής επεξεργασίας σήματος και εικόνας. Η υλοποίηση πραγματοποιήθηκε με το LabVIEW v 8.6 και ονομάστηκε R-DSP Server. Αξιοποιώντας τις δυνατότητες που προσφέρει ο R-DSP Server οι χρήστες μπορούν να αναπτύξουν τα δικά τους γραφικά περιβάλλοντα (Graphical User Interfaces -GUIs) τα οποία ονομάζονται προσαρμοζόμενα γραφικά περιβάλλοντα (Customized GUIs,) για τον απομακρυσμένο έλεγχο DSP εφαρμογών. Για την εύκολη και γρήγορη ανάπτυξη τέτοιων γραφικών εφαρμογών στο περιβάλλων του LabVIEW, αναπτύχθηκε μια σειρά εργαλείων που ονομάστηκε R-DSP LabVIEW Toolkit. Η εργασία ολοκληρώνεται με την παρουσίαση της λειτουργιάς του R-DSP Server αλλά και της χρήσης του R-DSP Toolkit. / The purpose of this work is to present an approach which could expand the features of Remote Laboratories focused on embedded Digital Signal Processing (DSP) systems. The proposed approach is based on a system which is designed and developed with LabVIEW and is called R-DSP Server. Exploiting this system, users are able to develop their own Graphical User Interfaces (GUIs), named Customized GUIs, for the remote control and validation of real-time DSP applications. These GUIs are tailored to the needs of each DSP application and can be implemented in any programming language. The rapid design of Customized GUIs using LabVIEW for the communication with the R-DSP Server is achieved using an implemented set of functions, called R-DSP LabVIEW Toolkit.
|
312 |
Sistemas de controle fuzzy neural e neural adaptativo destinados ao controle de pressão em rede de distribuição de águaMoura, Geraldo de Araújo 21 November 2016 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-05-30T13:07:14Z
No. of bitstreams: 1
- Geraldo Moura -.pdf: 5891648 bytes, checksum: 9ca720ba25a16879f0da2a9a837d1f4b (MD5) / Made available in DSpace on 2017-05-30T13:07:14Z (GMT). No. of bitstreams: 1
- Geraldo Moura -.pdf: 5891648 bytes, checksum: 9ca720ba25a16879f0da2a9a837d1f4b (MD5)
Previous issue date: 2016-11-21 / This work deals with pressure control in water distribution networks to promote the optimization of hydraulic loads in order to minimize water losses in the pipes and energy in the corresponding pumping system. Therefore, a neural fuzzy control system (NFCS) beyond the adaptive neural control system (ANCS) were developed. These control systems have been tested and evaluated on experimental bench. The neural fuzzy control system (NFCS) involves techniques of artificial neural network (ANN) and fuzzy logic. The adaptive neural control system (ANCS) used a ANN Perceptron type multilayer by backpropagation technique and gradient descent with Levenberg-Marquardt optimizer. The pressure control will be through the frequency inverter with frequency adjustments in real time, which will act on pump motor assembly installed in the trial bench hydraulic network. Control systems NFCS and ANCS, in this work, were confronted in order to promote a comparative analysis between controllers. The results showed that the ANCS reached a performance index greater than NFCS almost entirely. Finally it was added a logic filter to supervisory control and data acquisition system (SCADA) to make the ANCS able to alternately control the minimum pressure points from the distribution network of experimental bench. Both control systems, ANCS and NFCS were developed in programming environment LabVIEW® / Este trabalho tem como objetivo o controle de pressão em redes de distribuição de água, a fim promover a otimização das cargas hidráulicas, buscando minimizar as perdas de água nas tubulações e de energia no correspondente sistema de bombeamento. Para tanto foram elaborados um sistema de controle fuzzy neural (SCFN) e um sistema de controle neural adaptativo (SCNA). Esses sistemas de controle foram testados e avaliados em uma bancada experimental. O sistema de controle fuzzy neural (SCFN) envolve técnicas de rede neural artificial (RNA) e lógica fuzzy. O sistema de controle neural adaptativo (SCNA) utilizou uma RNA do tipo Perceptron de múltiplas camadas, através da técnica de retropropagação (backpropagation) e gradiente descendente com otimizador de Levenberg-Marquardt. O controle de pressão é realizado através do conversor de frequência, com ajustes da frequência, em tempo real (on-line), que atuará sobre conjunto motor bomba (CMB) instalado na rede hidráulica da bancada experimental. Os sistemas de controle SCFN e o SCNA, apresentados neste trabalho, foram confrontados a fim de promover uma análise comparativa entre os controladores. Os resultados demonstraram que o SCNA apresentou especificações superiores ao SCFN em quase sua totalidade. Finalmente foi acrescentado um filtro lógico ao SCADA (supervisory control system and data acquisition) para tornar o SCNA capaz de controlar alternadamente a pressão mínima dentre pontos da rede de distribuição da bancada experimental. Ambos os sistemas de controle, SCFN e SCNA foram desenvolvidos em ambiente de programação LabVIEW®.
|
313 |
Sistema automatizado de medição e análise das propriedades magnéticas de materiais utilizando o quadro de Epstein / Automated system for measurement and analysis of magnetic materials properties using the Epstein framePereira Junior, Ilton Ancelmo 15 February 2011 (has links)
Made available in DSpace on 2016-12-12T17:38:37Z (GMT). No. of bitstreams: 1
ILTON ANCELMO PEREIRA JUNIOR.pdf: 6854626 bytes, checksum: 8fdf9667f4e840b4dc298f1e9605bf2d (MD5)
Previous issue date: 2011-02-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This master thesis introduces a study about the influence of frequency variation induced in the magnetic properties of materials. Experiments are accomplished in the Epstein frame or Epstein square, the measurements are being acquired through a data acquisition system PC-based, which is handled through a software developed in LabVIEW. As results, we have the magnetization curve, hysteresis loop and specific losses for several preset frequencies, and the harmonic distortion evaluation in current and voltage signals during the trial. The end of the essay presents a methodology able to accomplish the harmonics cancellation generated by the steel saturation, applying a voltage source having adjustable harmonic voltages. / Esta dissertação apresenta um estudo sobre a influência da variação da frequência nas propriedades magnéticas dos materiais. Os ensaios são realizados em quadro de Epstein, sendo as medições obtidas através de um sistema de aquisição de dados baseado em PC, o qual é controlado por um software desenvolvido em LabVIEW. Como resultados têm-se a curva de magnetização, a curva de histerese e as perdas específicas para diversas frequências pré-selecionadas, sendo avaliadas as distorções harmônicas de tensão e de corrente, durante os ensaios. Ao final é apresentada uma metodologia capaz de realizar o cancelamento das harmônicas geradas pela saturação do aço, através de uma fonte de tensão com ajuste de harmônicos.
|
314 |
Sintonización de un PID para controlar remotamente la variable nivel en un módulo educativoGómez Avalos, Oscar Omar, Betalleluz Wong, Alexander January 2015 (has links)
El fin de este proyecto de tesis fue Sintonizar un controlador PID, por los métodos de Ganancia Límite y Tanteo, para controlar de manera remota la variable Nivel en un módulo educativo del Laboratorio de control de la Universidad Ricardo Palma, esto se hizo con la finalidad que el alumno pueda entender la sintonía de un PID, lo cual es siempre recurrente en el campo. El control remoto permitió asemejar mucho a los procesos actuales.
Al finalizar la tesis se obtuvo un control PID sintonizado bajo el método de Ganancia Límite con valores de Kp=0.6, Ti=0.067 minutos y Td=0.017 minutos; el cual dio valores de Error de estado estacionario=3.41% o 0.341, Tiempo de estabilización=30 segundos, Máximo sobre impulso=5.505% y Tiempo de subida=26 segundos; para un Set Point de 10 cm. Por otro lado, para un Set Point de 30 cm, dio valores de Error de estado estacionario=3.03% o 0.91, Tiempo de estabilización=67 segundos, Máximo sobre impulso=0.381% y Tiempo de subida=66 segundos.
Además, se sintonizó bajo el método de Tanteo con valores de Kp=0.3, Ti=0.019 minutos y Td=0.01 minutos; el cual dio valores de Error de estado estacionario=2.99% o 0.299, Tiempo de estabilización=40 segundos, Máximo sobre impulso=6.69% y Tiempo de subida=39 segundos; para un Set Point de 10 cm. Por otro lado, para un Set Point de 30 cm, dio valores de Error de estado estacionario=1.87% o 0.56, Tiempo de estabilización=75 segundos, Máximo sobre impulso=0.398% y Tiempo de subida=73 segundos.
The purpose of this thesis project was Tuning a PID controller, using methods of grope and Gain Limit to remotely control the variable level in an educational module Control Laboratory of the University Ricardo Palma, this was done in order that students can understand the tuning of a PID, which is always recurring in the field. The remote control allowed much resembles the current processes.
After the thesis tuned PID control method gain under the limit values of Kp = 0.6 was obtained, Ti = Td = 0067 minutes and 0017 minutes; which gave values of steady state error = 3.41% or 0.341, Settling time = 30 seconds Maximum overshoot = 5.505% and Rise Time = 26 seconds; Set for a Point of 10 cm. On the other hand, for a set point of 30 cm, gave values of steady state error = 3.03% or 0.91 Settling time = 67 seconds Maximum overshoot = 0.381% and Rise Time = 66 seconds.
Furthermore, it was tuned under trial and error with values of Kp = 0.3, Ti = Td = 0019 minutes and 0.01 minutes; which gave values of steady state error = 2.99% or 0.299, Settling time = 40 seconds Maximum = 6.69% overshoot and rise time = 39 seconds; Set for a Point of 10 cm. On the other hand, for a set point of 30 cm, gave values of steady state error = 1.87% or 0.56 Settling time = 75 seconds Maximum overshoot = 0.398% and Rise Time = 73 seconds.
|
315 |
New Generation of Vibration Experiments Remotely Controlled Over the Internet:Development of Labview based Spectrum Analyzer and Interface. / New Generation of Vibration Experiments Remotely Controlled Over the Internet:Development of Labview based Spectrum Analyzer and Interface.Ullah, Farooq Kifayat January 2010 (has links)
This thesis is part of the on going work at BTH (Blekinge Technical University) to develop a remote lab for Sound and Vibration Experiments. The aim of this undertaking is to develop a Spectrum Analyzer that can simultaneously take inputs from 10 sensors and be able to measure the Power Spectral Density, Cross correlation, Frequency Response Functions (FRF) and coherence. The Interface and analysis algorithms are developed inLabview programming language. The thesis starts by introducing the overall aim of the project and its scope, the place of this particular thesis in the whole picture and the algorithms used for analysis are introduced. In the second part of the thesis the development of the software is explained and the main aim is to thoroughly document the software. This part of the thesis explains Labview programming concepts in detail to make it easier for other students who want to undertake theses to continue this work and who may not have experience of Labview programming.Two versions of the spectrum analyzer were developed. The third part explains theexperimental set up and results obtained and compares measurements to those obtained using other spectrum analyzers. An accurate Spectrum Analyzer Virtual Instrument has been developed and tested during this thesis project and it can be used as a component of the proposed Sound and vibration analysis laboratory and also for general Spectral Analysis tasks. / Good guide to learn Labview and sound and vibration analysis.. / fkul08@gmail.com Is my email and i can be contacted via messenger usually at farooq_kifayat@hotmail.com And i can also be contacted via skype using farooqkifayat as my name. I move around a lot so i have no permanent address that stays longer than half a year .
|
316 |
Optimalizace pokusného NQR spektrometru / Optimization of the experimental NQR spectrometerSegiňák, Ján January 2017 (has links)
The thesis deals with the NQR spectroscopy, which is one of the modern non-destructive measurement and diagnostic methods for the characterization of various materials. It is using a quadrupole moment - a property of atomic nuclei of certain isotopes. A method of nuclear quadrupole resonance (NQR) is in principle very similar to nuclear magnetic resonance (NMR). Thesis in the theoretical part analyse the principles of NMR and NQR, describes the possible use of this method to detect for example explosives, drugs, and other chemicals. In the following chapters are analysed the key parameters of NQR spectrometer and the principle of the chosen measurement method. The practical part deals with the individual components of NQR spectrometer, the design of possible improvements and programming of the measuring sequence. In the final chapter are processed the measurements of the submitted samples.
|
317 |
HIL model elektromechanického systému / HIL model of electromechanical systemMalík, Lukáš January 2018 (has links)
This diploma thesis deals with creation of elektromechanical model in Modelica language which is subsequently imported into LabVIEW environment. The Modelica language, LabVIEW graphical programming tool and Functional Mock-up Interface 2.0 standard are described in the introduction of this thesis. Functional Mock-up Interface is a tool independent standard witch, defines a standardized interface to ModelExchange and Co-simulation of complex system components. The model of electromechanical system was created based on Functional Mock-up Interface standard. Part of the work focuses on the Functional Mock-up Unit storage possibilities and LabVIEW support to import models of this type. The imported model was simulated and tested in this environment. Finally, the instance of Functional Mock-up Unit was connected with LabVIEW FPGA target for the purpose of model HIL simulation on CompactRIO platform.
|
318 |
Klasifikace LED z hlediska citlivosti na kolísání napájecího napětí / LED lamps clasification regarding voltage flicker sensitivityŠtefek, Roman January 2019 (has links)
The master's thesis deals with the design and time optimization of the method designed to determine the classification of LED lamps due to their resistance to power supply fluctuations. Classification of LED lamps in the classification scale and their labelling by the classification index is the task of informing in a simple way those interested in the ability of a concrete light source to function properly, without disturbing flickering, in conditions of electromagnetic interference.
|
319 |
Návrh komplexního HIL simulátoru pátých dveří automobilu / Design of a complex HIL simulator of car boot doorObrtáč, Tomáš January 2019 (has links)
This thesis covers the development of complex HIL simulator for the fifth car door. The beginning of the thesis is dedicated to theoretical research in the area of In-the-Loop testing. Practical part describes development of HIL simulator complemented by power electronics part. A simulation environment Matlab/Simulink was used for control design and analysis. Before the beginning of the work was measured signal part of control unit and specific signal sequences were identified. The control was applied on sbRIO device from National Instruments company with the implementation of a model on FPGA. Specific requirements for sensing speed and generation of communication signals lead to creation of unique hardware for application needs. The result of the thesis is complex HIL simulator with intuitive GUI and possibility of simulations a wide range of DC motors.
|
320 |
Optimalizace a měření transportních experimentů na grafenových polem řízených tranzistorech / Optimalization and measurement of transport experiments on graphene field effect transistorsUrbiš, Jakub January 2019 (has links)
This thesis deals with the automation of transport experiments on graphene using the graphical programming language LabVIEW. Specifically, the experiments with graphene relative humidity sensors are based on: a two-point graphene structure, a two-point structure of SiO$_2$ and a four-point graphene structure in the form of a Hall bar. In all of these experiments, relative humidity, input electrical parameters, SPM measurements, and macroscopic transport properties are measured simultaneously. The program DeviceManager developed in framework of this thesis simplifies the implementation of these experiments.
|
Page generated in 0.0347 seconds