• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 9
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laboratory Modeling of Erosion Potential of Earthen Embankments in Contact With Open Bedrock Joints

Zaleski, Joseph T. 01 May 2014 (has links)
Earthen dams are often built into bedrock abutments and on bedrock foundations. Bedrock joints naturally occur in bedrock materials. These bedrock joints create voids for ground water to pass through. Historically earthen dams were sometimes built in direct contact with the bedrock joints, causing a contact point between the soil of the dam and the flowing water. It has been engineering practice to place grout into exposed bedrock joints for some time now. However, soil is not always cleaned out of bedrock joints before they are grouted, which leaves a weakness for water to push through. The purpose of this study is to understand the point at which water flowing through bedrock joints will erode soil from the earthen dam embankment. The information of how much soil is eroded away in an amount of time is also crucial to the scope of this study. The goals of this study were accomplished by building a physical model or apparatus of an earthen dam embankment on top of a simulated bedrock joint. Different soil types were tested in the apparatus to start a database of information about erosion rates of the soil along the bedrock joint and embankment interface. These results will be used to start a database for organizations that assign probabilities of dam failures. The purpose of the study is not to indicate when dams will fail, but to help with assigning probabilities of the likelihood of a serious problem being caused from this type of mechanism presented in this study.
2

Mesoscale variability of the northern current in the gulf of lions and the role of bottom topography

Flexas Sbert, Maria del Mar 11 July 2003 (has links)
The Northern Current flows cyclonically contouring the continental slope in the NW Mediterranean. At the entrance of the Gulf of Lions this current is about 20 -- 30 km wide and flows along the deepest half of the continental slope, i.e. over the 1000 to 2000 m isobaths approximately. Surface speeds are of 30 -- 50 cm s^{-1}. In the MATER HFF experiment (March -- May 1997) mesoscale variability of the Northern Current is observed from current meter records, SST images and hydrographic data. The HFF experimental box is 20 x 40 km, covering the upper half of the slope (i.e. covering from 250 m to 1250 m depth isobaths). Current meter and satellite data show that the site is embedded in a region of significant Northern Current meandering and eddy activity. From SST images, meander wavelengths are estimated larger than 60 km, embracing smaller structures. These flow patterns affect upper-layer waters down to at least 650 m depth. Current meter data distinguish two narrow energetic bands centred at 3.5 days and 7.5 days, respectively, in agreement with previous studies.Baroclinic instability is viewed as a possible mechanism to explain the generation of the Northern Current meanders. The analytical model of Tang (1975) predicts the development of unstable waves of wavelength (> 60 km) and periods compatible with the 7.5 day band recorded with current meter devices. The higher frequency band of 3.5 days is out of the frequency range predicted by the classical baroclinic instability theory and it is discussed as a restriction of quasi-geostrophic theory.Barotropic instability is studied using a laboratory model of a -westward' jet flowing over the lower half of the continental slope, which considers dynamic similarity with the Northern Current. The laboratory model is cross-validated with a corresponding numerical model. Jet instabilities of currents similar to the Northern Current (i.e. westward jets) occur at the edges of the jet, showing a clear meandering tendency over the mid-slope. Westward currents of Ro = 0.1 -- 0.2 develop instabilities of wavelengths (50 -- 75 km) similar to those observed from SST images, with periods (3.3 -- 3.8 days) compatible with the 3.5 days period band recorded with HFFE current meters.The laboratory and numerical experiments have reproduced westward jets (as the Northern Current), but also eastward jets, in order to have a full approach to better understand the role of the bottom topography on barotropic instabilities. The slope current instabilities are successfully explained by the Marcus and Lee theory (1998) of jets on a beta plane. This theory is valid for westward flows with Ro > 0.1 and for eastward flows with Ro > 0.2 (jets of the so-called Regime II flows in this thesis), and it states that the instabilities of each shear layer of the barotropic jet take the appearance of a Kelvin-Helmholtz-like pattern, associated with a Rossby wave (of topographic origin in our case). According to this theory, the differences between eastward and westward jets rely on the disposition of the Rossby waves --at the centre of the current in eastward flows and at the edges of the jet in westward currents. Jets over a sloping bottom with small Rossby numbers (Ro < 0.1 for westward jets; Ro < 0.2 for eastward jets) show a flow pattern (the so-called Regime I in this thesis) that has common characteristics for eastward and westward flows. In these -small'-Ro flows, Kelvin-Helmholtz-like instabilities dominate, whereas Rossby waves are too weak to produce any major difference between jets flowing in eastward or westward direction. This occurs when the topographic influence, assumed proportional to the Ro number of the jet, is small.The differences between eastward and westward slope currents observed in this work (and similar observations of jets on a beta-plane from previous works) are explained in this thesis by a simple scheme based on conservation of potential vorticity, considering there are two main components in balance: the shear-induced vorticity and the topographically induced vorticity. The signs of these two components are determined by the relative direction of the flow with respect to the inclination of the bottom topography. Once the critical Rossby number is overpassed so that the topographic effects are important (Ro > 0.1 for westward jets; Ro > 0.2 for eastward jets), conservation of potential vorticity tends to enhance vortices at the centre of eastward jets --eastward jets show meandering at the jet core. In westward jets, potential vorticity conservation is responsible of enhancing vortices at each edge of the jet. Thus, westward jets (as the Northern Current) are broad and meandering occurs at the jet edges.In Ro > 0.1 westward flows (i.e. Regime II westward jets) a topographic Rossby wave appears over the shelf break. This result is likely observed because of the specific topography used in this work --a continental slope and a continental shelf separated by a shelf break, producing a strong change in ambient potential vorticity. Numerical simulations reveal that this Rossby wave is triggered by the slope current. This topographic Rossby wave is a robust pattern, since it is independent of the position of the current over the slope, the shape of the velocity shear profile of the jet, and the jet width. Although this type of wave could not be inferred from the HFFE field data, it could be a focus of study in further field experiments. It also needs further analytical consideration. The general conclusion extracted from this thesis that tries to explain the mesoscale variability associated to the Northern Current is that both baroclinic and barotropic instability could explain part of the oceanic observations. As a consequence, mixed barotropic-baroclinic instability (which occurs at wavelengths which are between those corresponding to pure barotropic and pure baroclinic instability) is thought to play an important role on the observed mesoscale variability. The resulting wavelength would depend on the relative strength of both mechanisms.
3

Internetové ovládání laboratorních modelů / Internet based control of laboratory models

Dobrovolný, Petr January 2011 (has links)
This award solves design of two models that are designed to teach on PLC and in the future on the Control Web. Both models should be used in LabLink system, which allows you to remotely working on laboratory tasks. The first software model simulates the movement of trains on rail in relation on control from the PLC. The second model is a physical model of drill. In both models are solid managing and type of construction, which allows operation without physical intervention.
4

Impact of cocoa (Theobroma cacao L.) fermentation on composition and concentration of polyphenols: Development of fermentation model system and utilization of yeast starter cultures

Lee, Andrew H. 28 September 2017 (has links)
Consumption of cocoa and dark chocolate products has been associated with positive health outcomes including reduced onset of cardiovascular disease, inflammation, diabetes, obesity, and platelet disorders. Cocoa polyphenols, putatively responsible for these beneficial activities, are highly impacted by cocoa variety, agronomic effects and processing history. However, the difference in polyphenol concentration and composition between cocoa products originating from different hybrid clones (selected for high yield) or from different fermentation conditions is not fully understood. Detailed polyphenol characterization including determination of total polyphenol and total procyanidin concentrations, and qualitative and quantitative analysis of (mean) degree of polymerization was conducted. Significant differences in total polyphenol and procyanidin concentrations were observed between five genetic clones grown by the USDA-ARS Cocoa Germplasm Repository located in Mayagüez, Puerto Rico. To facilitate cocoa fermentation research in laboratories distant from cocoa harvesting sites, a laboratory-scale cocoa fermentation model system was developed in this study. This model system used dried, unfermented, cocoa beans and simulated pulp medium as the starting material. The model system supported growth of the essential succession of cocoa fermenting microorganisms and generated similar chemical changes to those observed in on-farm cocoa fermentation. Using this model system, the impact of inoculation with proprietary yeast strains Saccharomyces cerevisiae Lev F and Saccharomyces cerevisiae Lev B on cocoa polyphenol concentration and composition was evaluated. Inoculation with both yeast strains resulted in increased fermentation rate and Lev B inoculation resulted in higher total polyphenol and procyandin contents at the end of fermentation. Overall, the present work addressed the influence of cocoa variety selection and fermentation process conditions on the composition and concentration of polyphenols. These findings will contribute to continued efforts to develop cocoa products with optimized bioactivity and maximum disease preventative effects. / PHD
5

The Deformation Characteristics Of Deep Mixed Columns In Soft Clayey Soils: A Model Study

Sengor, Mahmut Yavuz 01 February 2011 (has links) (PDF)
Deep Mixing involves the introduction of cementitious or specially formulated solutions directly into the ground through the use of purpose built blending injection augers. The system is mainly designed to increase strength and reduce compressibility of treated soil. In the first stage of the research effective mixture ratios and mixture types of stabilizing agents were investigated for soft clays (CL form Eymir lake and kaolinite) by means of unconfined compression (UC) tests on stabilized soils. The unconfined compressive strength (UCS) values were obtained for 7,28,90 and 365 days of curing time. The ratio of elastic modulus at 50% failure load (E50) to (UCS) of the stabilizing agents were also investigated. In the second part of the research programme, deep mixed model columns with the three column materials and four different column spacings are formed within the large scale consolidation tanks, and the consolidation characteristics of deep mixed improved clay were investigated. Based on the results of large scale consolidation tests on deep mixed columnar improved soft clay, compressibility characteristics of improved soft clay were determined in relation to spacing of columns namely, effective replacement ratio and binder content. The cement content (also UCS) of the column material was found to be the most important parameter for the improvement effects of DMM applications. Validity of the relations for the estimation of bulk compression modulus of soilcrete were discussed. The use of constrained modulus of the soil and the column material were found to be effective in predicting the compression modulus of the soilcrete. Settlement reduction factor versus replacement ratio and cement content relations were determined which may be used for preliminary design works. The stresses on the soil and the columns were backcalculated from the settlement values. The stress ratios were obtained.
6

Characteristic errors in 120-H tropical cyclone track forecasts in the western North Pacific

Kehoe, Ryan M. 03 1900 (has links)
Approved for public release, distribution is unlimited / occurring most frequently. For the 217 large-error cases due to midlatitude influences, the most frequent error mechanisms were E-DCI (midlatitude), excessive response to vertical wind shear, excessive midlatitude cyclogenesis (E-MCG), insufficient midlatitude cyclogenesis (I-MCG), excessive midlatitude cyclolysis (E-MCL) and excessive midlatitude anticyclogenesis (E-MAG), which accounted for 68% of all large errors occurring in both NOGAPS and GFDN. Characteristics and symptoms of the erroneous forecast tracks and model fields are documented and illustrative case studies are presented. Proper identification and removal of the track forecast displaying an error mechanism could form a selective consensus that will be more accurate than a non-selective consensus. / Captain, United States Air Force
7

Vyhodnocení hydrodynamického zatížení přelévané mostovky / Evaluation of hydrodinamic load on a brdge deck

Řezník, Jindřich January 2018 (has links)
The subject of this thesis is the evaluation of hydrodinamic load on a physical model of a bridge deck, especially to find the relation between the median and extreme quantiles of each hydrodanamic load part and to evaluate the influence, which has the shape of the bridge deck on the size of this load. Relations, that was found may be used to determine characteristic values of loads, caused by water flow, for example, when designing the bridge bearings.
8

Experimentální stanovení hydrodynamického zatížení modelu přelévané mostovky / Experimental determination of the hydrodynamic load of the flooded bridge model

Naiser, Dominik January 2020 (has links)
The diploma thesis deals with experimental determination of hydrodynamic load on the overflowed bridge deck model. In the first part of the thesis the author describes the analysis of the problem together with the basic physical laws and principles that are used or assumed in the measurement itself. In the second part the author describes the measurements in the laboratory of the Faculty of Civil Engineering and its gradual processing. At the end of the work are described the results of measurement, their comparison with numerical modeling, other authors and their possible use in practice.
9

Laboratorní model vírového rychloměru / Laboratory Model of the Vortex Speed Indicator

Kazda, Ondřej January 2009 (has links)
This work is concerned with posibility of measuring a wind flow by Von Karman vortex sheed structure. The bluff body is situated in the way of air flow propagation and consequentally vortexes will be appeared. Important part of speedmeter design is measurment chamber must allow to vortex sheed propagation. The transient and the reciever are situated vertically to propagation of flow.The Ultrasonic carrier is transmitted and modulated by freqency of vortex sheeding in measurment chamber.Demodulator uses PLL to “focusing“ detection of the ultrasonic beam. This can be indicated like lock and unlock phase loop. From known value of sheed frequency can be directly calculated speed of flow.

Page generated in 0.0441 seconds