• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering Transcriptional Systems for Cyanobacterial Biotechnology

Camsund, Daniel January 2014 (has links)
Cyanobacteria are solar-powered cell factories that can be engineered to supply us with renewable fuels and chemicals. To do so robust and well-working biological parts and tools are necessary. Parts for controlling gene expression are of special importance in living systems, and specifically promoters are needed for enabling and simplifying rational design. Synthetic biology is an engineering science that incorporates principles such as decoupling, standardization and modularity to enable the design and construction of more advanced systems from simpler parts and the re-use of parts in new contexts. For these principles to work, cross-talk must be avoided and therefore orthogonal parts and systems are important as they are decoupled by definition. This work concerns the design and development of biological parts and tools that can enable synthetic biology in cyanobacteria. This encompasses parts necessary for the development of other systems, such as vectors and translational elements, but with a focus on transcriptional regulation. First, to enable the development and characterization of promoters in different cyanobacterial chassis, a broad-host-range BioBrick plasmid, pPMQAK1, was constructed and confirmed to function in several cyanobacterial strains. Then, ribosome binding sites, protease degradation tags and constitutive, orthogonal promoters were characterized in the model strain Synechocystis PCC 6803. These tools were then used to design LacI-regulated promoter libraries for studying DNA-looping and the behaviour of LacI-mediated loops in Synechocystis. Ultimately, this lead to the design of completely repressed LacI-regulated promoters that could be used for e.g. cyanobacterial genetic switches, and was used to design a destabilized version of the repressed promoter that could be induced to higher levels. Further, this promoter was used to implement an orthogonal transcriptional system based on T7 RNAP that was shown to drive different levels of T7 promoter transcription depending on regulation. Also, Gal4-repressed promoters for bacteria were engineered and examined in Escherichia coli as an initial step towards transferring them to cyanobacteria. Attempts were also made to implement a light-regulated one-component transcription factor based on Gal4. This work provides a background for engineering transcription and provides suggestions for how to develop the parts further.
2

Métabolisme d'un prébiotique par une souche d'escherichia coli pathogène : décryptage fonctionnel et mobilité de la région fos. / Prebiotic metabolism by a pathogenic Escherichia coli strain : functional decryption and mobility of the Fos region

Porcheron, Gaëlle 13 December 2011 (has links)
La région fos de la souche d’Escherichia coli pathogène aviaire BEN2908 permet le métabolisme des fructanes, des prébiotiques largement utilisés en alimentation humaine et animale. Ce métabolisme contribue à l’implantation de BEN2908 dans son réservoir, l’intestin. La région fos, située au sein de l’îlot génomique AGI-3, est composée de 6 gènes codant pour un transporteur de sucre et des enzymes impliquées dans le métabolisme des fructanes, et d’un gène transcrit de façon divergente codant pour FosR, un régulateur transcriptionnel de la famille LacI/GalR. Nous avons montré que l’expression des gènes fos est réprimée par FosR, contrôlée par la répression catabolique et induite en présence de fructanes. FosR se lie à 2 séquences opératrices de la région promotrice de l’opéron fos et cette liaison est inhibée en présence de fructanes, surtout par le 1-kestose. La région fos confère un avantage de croissance en présence de contenu cæcal et contribue à la colonisation des cæca in vivo. De plus, AGI-3 est mobile et transférable, ce qui suggère une possible diffusion du métabolisme des fructanes au sein de l’espèce E. coli. / The fos region of the avian pathogenic Escherichia coli strain BEN2908 is involved in fructan metabolism, prebiotics widely used commercially in food products for both humans and animals. This metabolism contributes to the establishment of BEN2908 in its reservoir, the intestine. The fos region, located within the genomic island AGI-3, is composed of six genes encoding a sugar transporter and enzymes involved in fructan metabolism, and of a divergently transcribed gene encoding a transcriptional regulator, FosR, belonging to the LacI/GalR family. We demonstrated that the expression of fos genes is repressed by FosR, controlled by catabolite repression and induced in the presence of fructans. FosR binds to two operator sequences of the fos operon promoter region. This binding to DNA is inhibited in the presence of fructans, especially by 1-kestose. The fos region strongly benefits growth on cecal content and colonization of the ceca in vivo. Moreover, AGI-3 is mobile and transferable, suggesting a possible dissemination of fructan metabolism within the species E. coli.
3

Development of a single-molecule tracking assay for the lac repressor in Escherichia coli

Broström, Oscar January 2019 (has links)
Gene regulation by transcription factors are one of the key processes that are important to sustain all kinds of life. In the prokaryote Escherichia coli this has shown to especially crucial. The operator sequence to which these transcription factors bind to are very small in comparison to the whole genome of E. coli, thus the question becomes how these proteins can find these sequences quickly. One particularly well-studied transcription factor in this regard is the lac repressor. It has been shown that this transcription factors finds its operators faster than the limit of three dimensional diffusion. The leading model for how the repressor does that is facilitated diffusion and this model has gained more experimental evidence, particularly using single-molecule fluorescence microscopy. This study aimed at measuring the unspecific binding time between the lac repressor and DNA in vivo, but in the end the project evolved to trying to establish a single-molecule tracking assay of the repressor in vivo. In this study a mutant of the repressor was expressed and purified, labelled with a synthetic fluorophore, electroporated into E. coli and tracking was performed under a microscope. One of the three types of experiments were partially analysed with an image analysis software. Unfortunately, analysis was not completed for all experiments which made it difficult to compare the results. In the end the data was compared by eye while also using the results from image analysis. With slight optimism it can be concluded that the assay worked, but it needs more development.

Page generated in 0.0243 seconds