• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mécanique quantique supersymétrique et opérateurs d’échelle pour le système de Rosen-Morse

Garneau-Desroches, Simon 07 1900 (has links)
Le présent mémoire est dédié à l’étude du rôle de la mécanique quantique supersymétrique dans la construction d’opérateurs d’échelle et de leurs applications pour le système quantique de Rosen-Morse. L’aboutissement de ces travaux est contenu dans un article qui constitue le dernier chapitre du mémoire. Précisément, on motive l’échec de la réalisation des opérateurs d’échelle comme opérateurs différentiels pour le potentiel de Rosen-Morse avec les méthodes traditionnelles. On exploite la propriété d’invariance de forme dans le contexte de la mécanique quantique supersymétrique comme un outil alternatif pour offrir une première approche quantique à la réalisation des opérateurs d’échelle pour la version hyperbolique de ce potentiel. On utilise cette réalisation pour obtenir celle d’opérateurs d’échelle pour une classe particulière d’extensions rationnelles du potentiel de Rosen-Morse hyperbolique avec des techniques issues de la supersymétrie. Des états cohérents sont construits à partir des réalisations obtenues pour les différents systèmes. Certaines de leurs propriétés sont analysées et mises en comparaison. En parallèle, on utilise une transformation canonique ponctuelle pour déduire une première réalisation des opérateurs d’échelle comme opérateurs différentiels pour le système de Rosen-Morse trigonométrique. De cette réalisation sont construits des états cohérents pour lesquels des propriétés sont similairement analysées. / This master thesis is dedicated to the study of the role of supersymmetric quantum mechanics in the construction of ladder operators and of their applications for the quantum Rosen-Morse system. The results of this work are presented in an article that constitutes the last chapter of the thesis. Precisely, we motivate the failure of traditional methods in providing a realization for the Rosen-Morse ladder operators as differential operators. We provide a first quantum-based solution to this problem by using the shape invariance property in supersymmetric quantum mechanics as a tool in the construction of the ladder operators for the hyperbolic version of this potential. We use the latter realization to obtain that of a specific class of rational extensions of the hyperbolic Rosen-Morse system by means of supersymmetric techniques. Coherent states are constructed from the ladder operators obtained for the different systems. Some properties are analyzed and compared. In addition, we make use of a point canonical transformation in the derivation of the first realization of the ladder operators of the trigonometric Rosen-Morse system as differential operators. From this realization, we construct coherent states for which some properties are similarly analyzed.
2

Generalised ladder operators, degeneracy and coherent states in two-dimensional quantum mechanics

Moran, James 11 1900 (has links)
Dans cette thèse, nous discutons de la dégénérescence et de la construction d’états cohérents généralisés dans les systèmes quantiques en deux dimensions d’espace. Nous développons un schéma pour obtenir des spectres non dégénérés et des combinaisons linéaires appropriées des états propres d’énergie correspondants. Lorsque la dégénérescence dans le spectre d’énergie est linéaire dans les nombres quantiques, nous définissons des opérateurs d’échelle général- isés qui conduisent à une chaîne d’états avec un ensemble naturel de coefficients. De plus, nous récupérons des relations de complétude pour les états généralisés. Lorsque le spectre d’énergie est quadratique dans les nombres quantiques, nous utilisons certains résultats de la théorie des nombres pour catégoriser la dégénérescence et, par conséquent, les combinaisons linéaires appropriées des états propres d’énergie associés. En particulier, nous étudions des oscillateurs harmoniques bidimensionnels isotropes et anisotropes ainsi que le potentiel Morse bidimensionnel et son partenaire supersymétrique non séparable. Dans tous les cas, nous construisons des états cohérents et discutons certains aspects de leur caractère non classique. On retrouve une certaine compression dans les quadratures conjuguées, une dépendance non triviale des variances des quadratures vis-à-vis des paramètres introduits lors de la définition des spectres non dégénérés, et un problème de localisation pour les fonctions d’onde. Comme application, nous étudions le problème de la quantification et de l’analyse semi-classique de l’espace des phases en deux dimensions en exploitant la complétude des familles généralisées d’états cohérents comprimés en deux dimensions. / In this thesis we discuss degeneracy and the construction of generalised coherent states in two-dimensional quantum systems. We develop a scheme for defining non-degenerate spectra and the corresponding averaged energy eigenstates. When the degeneracy in the spectrum is linear in the quantum numbers, we are able to define generalised ladder operators which lead to a chain of states with a natural set of coefficients. Additionally, we are able to recover completeness relations for the generalised states. On the other hand, when the spectrum is quadratic in the quantum numbers, we utilise some results from number theory to categorise the degeneracy and correspondingly the averaged energy eigenstates. In particular we study the two-dimensional isotropic and anisotropic oscillators as well the two-dimensional Morse potential and its non-separable supersymmetric partner. In all cases, we compute the coherent states and discuss certain aspects of their non-classicality. We find squeezing between conjugate quadratures, non-trivial dependence of the quadrature variances on the parameters introduced when defining the non-degenerate spectra, and non-localisation of wavefunctions. As an application, we study the problem of quantisation and semiclassical phase space analysis in two dimensions by exploiting the completeness of generalised families of two-dimensional squeezed coherent states.

Page generated in 0.0766 seconds