• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design and Characterization of Topical Econazole Nitrate Formulations for Treating Raynaud’s Phenomenon

Bahl, Dherya January 2017 (has links)
No description available.
12

Cell-Specific Ca2+ Response in Pancreatic ß-cells

Gustavsson, Natalia January 2005 (has links)
Pancreatic ß-cells are heterogeneous in their secretory responsiveness, glucose sensitivity and metabolic rate. A diminished and delayed first-phase insulin release is an early sign of failing ß-cells in diabetes. Mechanisms controlling functional characteristics, such as lag time for insulin release or magnitude of the response in each individual cell are unknown. To find out whether the heterogeneity represents a random phenomenon in ß-cell or is a manifestation of reproducible characteristics, we compared parameters of Ca2+ response in Fura-2 labelled ob/ob mouse ß-cells during two consecutive stimulations with glucose. Lag times, as well as peak heights and nadirs of initial lowering showed a strong correlation between the first and second stimulation. Thus, timing and magnitude of the early Ca2+ response were specific for each cell. ß-Cells from lean mice, diabetic db/db mice and rats also showed cell-specific responses characteristics. This indicates that a cell-specific Ca2+ response to glucose is common in rodent ß-cells, both normal and diabetic. Another question was whether aggregated ß-cells show cell-specific responses. Using the same protocol as for dispersed ß-cells, we analysed Ca2+ responses in clusters of different size and in intact islets from ob/ob and lean mice. Correlations were found between the first and second stimulation for timing and magnitude of [Ca2+]i rise, and for the initial lowering. Next, we tested if the ß-cell response is cell-specific, when induced at different steps of the stimulus-secretion coupling. The glycolytic intermediate glyceraldehyde, the mitochondrial substrate KIC, the KATP-channel blocker tolbutamide and arginine were used as tools. [Ca2+]i changes were studied in dispersed ß-cells from lean, ob/ob and db/db mice. NADH responses to glucose and KIC were analyzed as a measure of metabolic flux. The correlation between Ca2+ and insulin response from individual ß-cells was tested using Fluo-3 and Fluozin-3. Both timing and magnitude of calcium responses were cell-specific in lean mouse ß-cells with all tested secretagogues. ß-Cells from ob/ob and db/db mice showed cell-specific timing of Ca2+ responses to glyceraldehyde but not to KIC, tolbutamide or arginine. However, ob/ob mouse ß-cells within intact islets showed cell-specific timing of tolbutamide-induced response. NADH responses to glucose were cell-specific in all three mouse models, but the timing of NADH responses to KIC was cell-specific only in lean mice. Thus, a cell-specific response can be induced in normal ß-cells at several steps of stimulus-secretion coupling for nutrient-stimulated insulin release. Cell-specific properties of ß-cell ion channels and the mitochondrial metabolism are affected in db/db and ob/ob mice. The relation between mitochondrial mass and parameters of Ca2+ responses were investigated in Mitotracker Red and Fluo-3 labelled ß-cells using confocal microscopy. Data show that ß-cell mitochondrial state may play an important role in determining the timing of [Ca2+]i changes. In summary, the early Ca2+ response pattern in ß-cells, including the lag time, the nadir of initial lowering and the height of the first peak response is cell-specific. Isolated and functionally coupled ß-cells show cell-specific timing of Ca2+ responses when stimulated with metabolic and non-metabolic agents. This may be a robust mechanism of importance for the adequate function of ß-cells and a basis for the pacemaker function of some cells. A disturbed cell specificity of the mitochondrial metabolism and ion channel function appears to be a marker of ß-cell dysfunction in hyperglycemia and diabetes and may explain the delayed insulin release in ß-cells from diabetic subjects.
13

Transfer of small molecules across membrane-mimetic interfaces

Velicky, Matej January 2011 (has links)
The presented thesis investigates the transfer of drug molecules across interfaces that mimic biological membrane barriers. The permeability of drug molecules across biological membrane mimics has been investigated in a novel artificial membrane permeation assay configuration using an in situ time-dependent approach and reproducible rotation of the membrane. A method to determine the membrane permeability from the knowledge of measured permeability and the applied stirring rate is presented. The initial transient of the permeation response, previously not observed in situ, is investigated and its importance in data evaluation is discussed. The permeability coefficients of 31 drugs are optimised for the conditions found in vivo and a correlation with the fraction absorbed in humans is presented. The evidence for ionic and/or ion-pair flux across the artificial membrane obtained from measurement of permeability at different pH is supported by the investigation of the permeation assay with external membrane polarisation. The permeability coefficient of the solute's anionic form is determined. Liquid/liquid electrochemistry has been used to study the transfer of ionized species across the interface between water and 1,2-dichloroethane. An alternative method to study the transfer of partially ionised drug molecules employing a rotating liquid/liquid interface is presented. In addition, a bipolar electrochemical cell with a rotating-disc electrode is developed and its properties investigated in order to verify the hydrodynamics of the rotating artificial membrane configuration. Finally, in support of the electrochemical techniques used is this thesis, a detailed preparation and evaluation of the silver/silver sulphate reference electrode is presented.
14

Comparing bioretention cell and green roof performance in Parma, OH

Sugano, Laura, Sugano 07 May 2018 (has links)
No description available.

Page generated in 0.0442 seconds