• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the entire functions from the Laguerre--P\'olya class having monotonic second quotients of Taylor coefficients

Nguyen, Thu Hien 17 November 2022 (has links)
We investigate the famous Laguerre–Pólya class of entire functions and its subclass, the Laguerre–Pólya class of type I. The functions from these classes can be expressed in terms of the Hadamard Canonical Factorization (see Chapter 1, Definition 1.2 and 1.3). The prominent theorem by E. Laguerre and G. Pólya gives a complete description of the Laguerre–Pólya class and the Laguerre–Pólya class of type I, showing that these classes are the respective closures in the topology of uniform convergence on compact sets of the set of real polynomials having only real zeros (that is, the set of so-called hyperbolic polynomials) and the set of real polynomials having only real negative zeros. Both the Laguerre–Pólya class and the Laguerre–Pólya class of type I play an essential role in complex analysis. For the properties and characterizations of these classes, see, for example, [31] by A. Eremenko, [40] by I.I. Hirschman and D.V. Widder, [43] by S. Karlin, [57] by B.Ja. Levin, [66, Chapter 2] by N. Obreschkov, and [74] by G. Pólya and G. Szegö. In the thesis, we study entire functions with positive coefficients and with the monotonic sequence of their second quotients of Taylor coefficients. We find necessary and sufficient conditions under which such functions belong to the Laguerre–Pólya class (or the Laguerre–Pólya class of type I).:List of symbols Introduction 1 Background of research 1 1.1 The Laguerre–Pólya class .................... 1 1.2 The quotients of Taylor coefficients ............... 3 1.3 Hutchinson’s constant ...................... 4 1.4 Multiplier sequences ....................... 4 1.5 Apolar polynomials........................ 8 1.6 The partial theta function .................... 10 1.7 Decreasing second quotients ................... 13 1.8 Increasing second quotients ................... 14 2 A necessary condition for an entire function with the increasing second quotients of Taylor coefficients to belong to the Laguerre–Pólya class 15 2.1 Proof of Theorem 2.1....................... 16 2.2 The q-Kummer function ..................... 29 2.3 Proof of Theorem 2.10 ...................... 31 2.4 Proof of Theorem 2.11 ...................... 43 3 Closest to zero roots and the second quotients of Taylor coefficients of entire functions from the Laguerre–Pólya I class 49 3.1 Proof of Statement 3.1 ...................... 50 3.2 Proof of Theorem 3.2....................... 53 3.3 Proof of Theorem 3.4....................... 61 3.4 Proof of Theorem 3.6....................... 66 4 Entire functions from the Laguerre–Pólya I class having the increasing second quotients of Taylor coefficients 69 4.1 Proof of Theorem 4.1....................... 70 4.2 Proof of Theorem 4.3....................... 76 5 Number of real zeros of real entire functions with a non-decreasing sequence of the second quotients of Taylor coefficients 81 5.1 Proof of Theorem 5.1....................... 82 5.2 Proof of Corollary 5.2....................... 88 5.3 Proof of Theorem 5.4....................... 88 6 Further questions 95 Acknowledgements 97 Selbständigkeitserklärung 101 Curriculum Vitae 103 Bibliography 107
2

Zeros de séries de Dirichlet e de funções na classe de Laguerre-Pólya / Zeros of Dirichlet series and of functions in the Laguerre-Pólya class

Oliveira, Willian Diego [UNESP] 11 May 2017 (has links)
Submitted by WILLIAN DIEGO OLIVEIRA null (willian@ibilce.unesp.br) on 2017-09-18T03:59:17Z No. of bitstreams: 1 Tese Final.pdf: 21063949 bytes, checksum: 766c3ca9aab9ca1a33dd27bf06043b1d (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T19:05:58Z (GMT) No. of bitstreams: 1 oliveira_wd_dr_sjrp.pdf: 21063949 bytes, checksum: 766c3ca9aab9ca1a33dd27bf06043b1d (MD5) / Made available in DSpace on 2017-09-19T19:05:58Z (GMT). No. of bitstreams: 1 oliveira_wd_dr_sjrp.pdf: 21063949 bytes, checksum: 766c3ca9aab9ca1a33dd27bf06043b1d (MD5) Previous issue date: 2017-05-11 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Estudamos tópicos relacionados a zeros de séries de Dirichlet e de funções inteiras. Boa parte da tese é voltada à localização de zeros de séries de Dirichlet via critérios de densidade. Estabelecemos o critério de Nyman-Beurling para uma ampla classe de séries de Dirichlet e o critério de Báez-Duarte para L-funções de Dirichlet em semi-planos R(s)>1/2, para p ∈ (1,2], bem como para polinômios de Dirichlet em qualquer semi-plano R(s)>r. Um análogo de uma cota inferior de Burnol relativa ao critério de Báez-Duarte foi estabelecido para polinômios de Dirichlet. Uma das ferramentas principais na prova deste último resultado é a solução de um problema extremo natural para polinômios de Dirichlet inspirado no resultado de Báez-Duarte. Provamos que os sinais dos coeficientes de Maclaurin de uma vasta subclasse de funções inteiras da classe de Laguerre-Pólya possuem um comportamento regular. / We study topics related to zeros of Dirichlet series and entire functions. A large part of the thesis is devoted to the location of zeros of Dirichlet series via density criteria. We establish the Nyman-Beruling criterion for a wide class of Dirichlet series and the Báez-Duarte criterion for Dirichlet L-functions in the semi-plane R(s)>1/p, for p ∈ (1,2], as well as for zeros of Dirichlet polynomials in any semi-plane R(s)>r. An analog for the case of Dirichlet polynomials of a result of Burnol which is closely related to Báez-Duarte’s one is also established. A principal tool in the proof of the latter result is the solution of a natural extremal problem for Dirichlet polynomials inspired by Báez-Duarte’s result. We prove that the signs of the Maclaurin coefficients of a wide class of entire functions that belong to the Laguerre-Pólya class posses a regular behavior. / FAPESP: 2013/14881-9

Page generated in 0.0631 seconds