• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The benthic ecology and food web dynamics of Te Waihora (Lake Ellesmere)

Wood, Hannah January 2008 (has links)
Coastal and shallow lakes are often subjected to eutrophication due to nutrients from catchment farming activities. Lake Ellesmere (Te Waihora) is a hyper-eutrophic lake which has gained recent attention because of concerns over its ecological health and fishery status. This study investigated the benthic ecology of the lake by extensive spatial and temporal sampling. Eight littoral sites were sampled on a single occasion, and 20 benthic sites were sampled once per season for one year. Water chemistry conditions, substrate and invertebrate communities varied significantly around the lake. Salinity, pH, DO and seston were primarily affected by freshwater inputs from inflow streams and salt water intrusion due to the lake opening to the sea. On these occasions, salinity reached 32 ‰ at the lake outlet. The lake invertebrate community was depauperate, comprising of only two species of invertebrate predators restricted to the littoral zone and eight benthic invertebrate taxa, dominated by oligochaetes, amphipods and chironomids. Benthic invertebrate abundances also reflect the dominant local substrate, where oligochaetes and chironomids preferred areas of silt substrate, whereas Potamopyrgus preferred harder substrate. Stable isotope and gut analysis determined that the primary food sources within the lake were phytoplankton and algae. Macrophytes provided a minimal contribution to the food web, possibly relating to the change in status from a clear water, macrophyte dominated lake to a turbid, phytoplankton dominated condition since the Wahine Storm in 1968. Isotope analysis also showed that the lake food web was markedly different in its carbon values from food webs of its inflow streams and nearby marine source. However the lake food web did show a marine-derived carbon signature. A mesocosm experiment testing the effect of common lentic predators on the abundance of the lake chironomid Chironomus zealandicus, showed that if invertebrate predators were present in the lake they could markedly reduce the abundance of the pest prey species. This study highlights that the frequent re-suspension of bottom sediments, lake level fluctuation resulting in wetting and drying of littoral zones, and the management of the lake opening to the sea all have an effect on the benthic ecology of Te Waihora.
2

Response of benthic invertebrate fauna to fluctuating lake levels and salinity concentrations in Lake Ellesmere/Te Waihora

Wilks, Taryn January 2010 (has links)
Lake Ellesmere/Te Waihora is one of New Zealand’s largest coastal, brackish water lakes. It has nationally significant wetland bird populations and is regionally important for iwi. The lake regularly experiences fluctuations in water level, resulting in a continually expanding and contracting littoral zone. This study investigated the impacts of these water level changes on the ecology of the lake. Water chemistry results collected over 12 months, confirm the lake is hypertrophic, due to high nutrient (nitrogen and phosphorus) concentrations resulting in high chlorophyll a levels and low water clarity. Water chemistry conditions were collected at five locations around the lake and showed marked spatial variation, with the eastern most end (Kaituna Lagoon) having generally the best water quality and lowest salinity (mean 4.9 ppt). Mean concentrations of total nitrogen ranged from 1.63 to 2.4 mg/L, chlorophyll a from 50 to 148 ug/L and total suspended solids from 151 – 248 mg/L. Seasonally, highest nutrient concentrations (mean, total nitrogen = 2.625 mg/L, dissolved reactive phosphorus = 0.059 mg/L and total phosphorus = 0.365 mg/L) occurred in late summer months (February – March), slightly decreasing but remaining high throughout winter. The benthic invertebrate community was surprisingly diverse, Crustacea (Paracorophium excavatum), Oligochaeta, Mollusca (Potamopyrgus antipodarum) and Chironomidae (Chironomus zealandicus) were dominant community members in the littoral zone, although 24 other taxa were collected. At high water levels, taxonomic richness increased in the eulittoral zone, while decreasing in the mid-littoral and lower littoral zones. In contrast, density decreased with higher water level in the eulittoral and mid-littoral zones, while increasing in the lower littoral zone. Benthic invertebrate communities appeared to be adapted to periods of intermittent dewatering, and even sustained dewatering under cooler temperatures. Despite the relatively high diversity of benthic invertebrates, invertebrate predators are generally absent from the lake. My results suggest multiple factors and interactions from predation pressure, salinity and lack of macrophytes are likely responsible for the absence of predatory invertebrates such as damselfly (Xanthocnemis zealandica) and dragonfly (Procordulia grayi) larvae. The lack of significant relationships between water quality variables and water level, and the positive relationship between chlorophyll a and salinity, suggests that current lake opening events do not have a positive effective on either water quality or phytoplankton biomass in Lake Ellesmere/Te Waihora. However, the current lake opening regime seems to be favourable to benthic invertebrate survival in the littoral zone, as the lake is predominantly open over winter when temperatures are lower, reducing the risk of desiccation. Anthropogenic activities which modify hydrodynamic and water quality conditions can potentially have a large negative impact on the structure and diversity of the littoral invertebrate community as well as flow on effects through the lake food web. Based on results from this study, I suggest a minimum lake level at Taumutu of 0.6 m during the months from November – April in order to protect benthic invertebrate communities in the eulittoral zone from extensive loss of habitat, extreme temperature and reduced risk of desiccation. Having a minimum set at ~0.6 m would provide sufficient littoral zone habitat for the lakes extensive bird life and fish populations. In addition, immediate efforts are needed into reducing nutrient loads into the lake, through improved farm management (nutrient and stocking budgets) and riparian fencing. Furthermore, physical and chemical water quality properties would benefit from an increased water level over summer months, by reducing water temperatures, diluting readily available nutrient concentrations and potentially reducing phytoplankton (and potentially toxic cyanobacterial) blooms.
3

An analysis of the impact of sea level rise on Lake Ellesmere - Te Waihora and the L2 drainage network, New Zealand

Samad, Shameer Sheik January 2007 (has links)
The potential impact of sea level rise on Lake Ellesmere - Te Wiahora and the subsequent effect on the efficiency and performance of the L2 Drainage network was investigated in relation to the operation of the L2 Drainage scheme. Lake Ellesmere is currently manually opened for drainage to the sea when the lake levels reach 1.05 m above mean sea level (asl) in summer and 1.13 m asl in winter. With a rise in sea level, the lake opening levels for both summer and winter would have to increase in order to maintain the current hydraulic gradient. Higher lake levels would impact drainage schemes such as the L2 drainage network. An integral research approach was used to study this potential impact, including fieldwork, analysis of data, hydrologic and hydraulic modelling. Both the hydrologic and hydraulic response of the L2 catchment and river were reproduced with reasonable accuracy by the use of computational models. Simulations of 2, 10 and 20 year annual recurrence intervals (ARI) rainstorm events coupled with higher lake levels show increase flooding along the length of the river. An increase in the lake opening levels, coupled with south-easterly wind was shown to have increased the degree of flooding on adjacent farmlands, but only a 3.50 per cent increase of water level (for all conditions simulated) 3.5 km upstream of the L2 River. The study clearly shows that weed growth within the L2 River plays an important part in controlling the water level within the channel. Results show it was responsible for an observed water level rise of 0.30 m from the winter to summer season. The combined use of hydraulic and hydrological models provides an effective tool to study future impacts on the drainage efficiency and performance of the L2 drainage scheme and other similar systems. The potential for both models to be used as a predictive tool for improving the operation of the L2 scheme and Lake Ellesmere was only limited by the difficulty in estimating model parameters especially for the hydrologic model.
4

The benthic ecology and food web dynamics of Te Waihora (Lake Ellesmere)

Wood, Hannah January 2008 (has links)
Coastal and shallow lakes are often subjected to eutrophication due to nutrients from catchment farming activities. Lake Ellesmere (Te Waihora) is a hyper-eutrophic lake which has gained recent attention because of concerns over its ecological health and fishery status. This study investigated the benthic ecology of the lake by extensive spatial and temporal sampling. Eight littoral sites were sampled on a single occasion, and 20 benthic sites were sampled once per season for one year. Water chemistry conditions, substrate and invertebrate communities varied significantly around the lake. Salinity, pH, DO and seston were primarily affected by freshwater inputs from inflow streams and salt water intrusion due to the lake opening to the sea. On these occasions, salinity reached 32 ‰ at the lake outlet. The lake invertebrate community was depauperate, comprising of only two species of invertebrate predators restricted to the littoral zone and eight benthic invertebrate taxa, dominated by oligochaetes, amphipods and chironomids. Benthic invertebrate abundances also reflect the dominant local substrate, where oligochaetes and chironomids preferred areas of silt substrate, whereas Potamopyrgus preferred harder substrate. Stable isotope and gut analysis determined that the primary food sources within the lake were phytoplankton and algae. Macrophytes provided a minimal contribution to the food web, possibly relating to the change in status from a clear water, macrophyte dominated lake to a turbid, phytoplankton dominated condition since the Wahine Storm in 1968. Isotope analysis also showed that the lake food web was markedly different in its carbon values from food webs of its inflow streams and nearby marine source. However the lake food web did show a marine-derived carbon signature. A mesocosm experiment testing the effect of common lentic predators on the abundance of the lake chironomid Chironomus zealandicus, showed that if invertebrate predators were present in the lake they could markedly reduce the abundance of the pest prey species. This study highlights that the frequent re-suspension of bottom sediments, lake level fluctuation resulting in wetting and drying of littoral zones, and the management of the lake opening to the sea all have an effect on the benthic ecology of Te Waihora.
5

A comparative study of riparian drain management and its effects on phosphate and sediment inputs to Te Waihora/Lake Ellesmere.

Mitchell, Hannah Laugesen January 2012 (has links)
Issues affecting water quality are seen as one of the most important and pressing global problems of our era. In New Zealand, water bodies with the poorest water quality and ecological condition tend to be surrounded by pastoral land use. Lake Ellesmere/Te Waihora in Canterbury, New Zealand, is a typical example of the issues that nutrient and sediment run-off from pastoral land can create. The aim of this study was to determine the relationship between sediment concentrations, phosphate concentrations, ecological state and the degree of riparian restoration on drains that flowed into Lake Ellesmere/Te Waihora, and to calculate the load of phosphorus and sediment delivered by each of the drains to Te Waihora over the year, comparing this to the loads carried by larger, natural streams and rivers. Little research has been done on these small artificial tributaries of the Lake Ellesmere/Te Waihora catchment. Data collection was carried out on 10 drains with variable degrees of riparian planting, monthly in summer and autumn, and fortnightly in winter and spring, due to higher variability in drain flows during this time. Sites 1, 2 had low dissolved oxygen (DO) and high total phosphorus (TP), lack of flow and extremely high conductivity, and (with) Site 5, higher suspended particulate matter (SPM) concentrations. All these factors are consistent with the lack of ecology occurring in these drains. All drains failed to meet the Australian and New Zealand Environment and Conservation Council (ANZECC) guidelines for TP concentrations. All water chemistry parameters showed significant differences between seasons except conductivity. Mean water temperatures and pH were higher in summer and lower in winter, while mean DO levels were higher in winter (and spring) and lower in summer (and autumn). Macroinvertebrate analyses indicated moderate to severe pollution in all the drains, despite the amount of riparian planting present and the presence of macroinvertebrate community structure was related mainly to substrate size. The degree and type of riparian planting present on the drains studied did not appear to affect TP, SPM, macroinvertebrates or general water quality. This is likely to be due to the fact that little of the riparian planting had been specifically planted for restoration purposes. The highest loads of TP and SPM occurred in winter and spring, and in the larger (wider and deeper) drains. As flow increased in the drain, so did the load of phosphorus and sediment carried. Comparison with Environment Canterbury monitoring data for the river tributaries of the lake indicated that more TP and SPM is carried to the lake by natural rivers and streams, than by the drains, but the latter do make a significant contribution. The percentage of TP that is in dissolved form was higher than had previously been assumed, in both the drains and the larger, natural rivers and streams. It is recommended that future restoration work aim to reduce the amount of phosphorus and sediment entering the larger drains in winter and spring. More adequate riparian planting needs to occur on these drains, and it needs to be managed in a way that a reduction in dissolved phosphorus levels is also achieved.

Page generated in 0.04 seconds