• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 8
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 71
  • 22
  • 16
  • 15
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The uncertainties of vertical drain design

應慧麗, Ying, Wai-lai, Winnie. January 1999 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
2

The effectiveness of certain sustainable urban drainage systems in controlling flooding and pollution from urban runoff

Macdonald, Kirsteen C. B. January 2003 (has links)
The research presented in this thesis addressed the performance of Sustainable Urban Drainage Systems (SUDS) at three sites in Scotland - a porous paved car park and two swales. It is the first research to provide results for such systems in the UK and also the first direct comparison between SUDS and traditional systems in situ. The aim of developing guidance on effectiveness and synthesising design recommendations has been achieved with the integration of hydrological and water quality studies together with modeling. Monitoring data and information were analysed on both a site-by-site basis and as a comparison between sites. Hydrological and water quality data were collected at each site. Key hydraulic parameters examined include percentage runoff, initial runoff loss, peak flow reduction and lag time. The term Benefit Factor has been introduced as a volumetric measure used to summarise the hydraulic benefit gained by installing SUDS, as no comparable terminology has yet been used elsewhere. The water quality parameters include physical/ chemical, hydrocarbons and metals. All three sites had low levels of pollution with little scope for water quality improvement, however the changes in water quality did indicate the different processes occurring within the systems. Computer models were built for the porous paving installation and one of the swales, further to understand the processes of source control and to analyse the systems. Hydraulic capacity exceedence criteria were investigated using design storms, and finally the models were used to evaluate improvements to design detailing. The results of this research have shown that, despite being under-designed according to current guidance, all three sites performed very favourably. The performance of porous paving and swales can be similar depending on design and detailing. A number of design recommendations are made as a result of observations and sensitivity analysis, and these should be considered in conjunction with current guidance.
3

The uncertainties of vertical drain design /

Ying, Wai-lai, Winnie. January 1999 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1999. / Includes bibliographical references (leaves 80-84).
4

THE USE OF HORIZONTAL DRAINS FOR CORRECTING A LANDSLIDE IN THE GREATER CINCINNATI, OHIO AREA

HAMANT, CHRISTOPHER CARL 15 September 2002 (has links)
No description available.
5

Beautiful can be Bold: A New Way to Wear the Drain

Sullivan, Megan 28 June 2016 (has links)
No description available.
6

Modelling Tile Drains Under Present and Future Climate Conditions

O'Neill, Patrick 10 December 2008 (has links)
Modelling the impact of climate change on the water from agricultural areas on a regional scale over a 40 year time period is the subject of this thesis. The Grand River watershed spans approximately 290 km with an area of approximately 6,800 km². Approximately 90% of the watershed is agricultural land some of which is tile drained. These tile drains, which cover approximately 15% of the total land of the watershed, are installed to augment field drainage. The tile drains usually outlet somewhere along the perimeter of a property; the discharge then typically moves along the surface until it discharges into a surface water body such as a river, pond, or lake. Investigating the impact of climate change on agricultural tile drainage at a watershed scale can be achieved using modelling. The tile drains can affect both the water quality and the water quantity of a watershed. With the potential climatic changes, the storm intensity, and growing season also could change. Spatial data for the Grand River watershed was gathered to allow for further simulation. The data for tile drained areas was added to land use/land class and soil data for the watershed to produce a map of tile drained agricultural areas. Climate change scenarios were then simulated for each cell. Three climate change scenarios were investigated to determine the impact on tile drain discharge and the hydrological process for the watershed. The climate change scenarios that were chosen were the A2, A1B, and the B1 scenario of the Intergovernmental Panel on Climate Change. After the simulations were completed for the tiled areas and the results collected, the simulations showed the greatest impact of tile drain discharge in the spring season as well as the fall season. For the tiled cells the annual average discharge was approximately 0.22 m3/ha for 1999. The average discharge was approximately 0.15 m3/ha for April of 1999. April accounted for approximately 65% of the annual tile drainage for 1999. The climate change scenarios were simulated and the average annual discharge increased approximately 0.023 m3/ha and 0.021 m3/ha for the A2 and A1B scenarios respectively. The B1 scenario had an average annual decrease of approximately 0.022 m3/ha.
7

Modelling Tile Drains Under Present and Future Climate Conditions

O'Neill, Patrick 10 December 2008 (has links)
Modelling the impact of climate change on the water from agricultural areas on a regional scale over a 40 year time period is the subject of this thesis. The Grand River watershed spans approximately 290 km with an area of approximately 6,800 km². Approximately 90% of the watershed is agricultural land some of which is tile drained. These tile drains, which cover approximately 15% of the total land of the watershed, are installed to augment field drainage. The tile drains usually outlet somewhere along the perimeter of a property; the discharge then typically moves along the surface until it discharges into a surface water body such as a river, pond, or lake. Investigating the impact of climate change on agricultural tile drainage at a watershed scale can be achieved using modelling. The tile drains can affect both the water quality and the water quantity of a watershed. With the potential climatic changes, the storm intensity, and growing season also could change. Spatial data for the Grand River watershed was gathered to allow for further simulation. The data for tile drained areas was added to land use/land class and soil data for the watershed to produce a map of tile drained agricultural areas. Climate change scenarios were then simulated for each cell. Three climate change scenarios were investigated to determine the impact on tile drain discharge and the hydrological process for the watershed. The climate change scenarios that were chosen were the A2, A1B, and the B1 scenario of the Intergovernmental Panel on Climate Change. After the simulations were completed for the tiled areas and the results collected, the simulations showed the greatest impact of tile drain discharge in the spring season as well as the fall season. For the tiled cells the annual average discharge was approximately 0.22 m3/ha for 1999. The average discharge was approximately 0.15 m3/ha for April of 1999. April accounted for approximately 65% of the annual tile drainage for 1999. The climate change scenarios were simulated and the average annual discharge increased approximately 0.023 m3/ha and 0.021 m3/ha for the A2 and A1B scenarios respectively. The B1 scenario had an average annual decrease of approximately 0.022 m3/ha.
8

Seepage in earth slopes with longitudinal drainage trenches

Kiriakidis Longhi, Ricardo Constantino, January 2002 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xii, 210 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 100-101).
9

Pore pressure response of liquefiable soil treated with prefabricated vertical drains : experimental observations and numerical predictions / Experimental observations and numerical predictions

Tsiapas, Ioannis, 1986- 09 July 2012 (has links)
Prefabricated vertical drains represent a soil improvement technique that achieves liquefaction mitigation by decreasing the drainage path length and hence expediting the dissipation of excess pore pressures. When evaluating the required spacing between vertical drains to achieve the desired reduction in pore pressure response, simplified design charts or more sophisticated finite element analyses are used to predict the pore pressure response. These charts and programs have not been evaluated in terms of their accuracy because there exists little data with which to compare the numerical predictions. More recently, the effectiveness of prefabricated vertical drains for liquefaction mitigation has been evaluated via small – scale centrifuge testing performed on untreated soil deposits and on soil deposits treated with vertical drains. In particular, the performance of the soil deposits subjected to sinusoidal motions and actual earthquake recordings was tested. The main goal of this research is to compare the experimental observations of pore pressure response from the centrifuge experiments with the numerical predictions. The comparison focuses on the average excess pore pressure ratio (r_(u,avg)) that was developed in the location of a vertical pore pressure array in both the untreated and drain – treated sides of the models. In parallel, a parametric study is performed for the numerical predictions in order to study the effect of each input parameter that influences the pore pressure prediction, namely the effect of soil properties, ground motion characteristics and drain parameters. The numerical predictions are found to provide reliable predictions of the pore pressure response despite the simplicity of the constitutive model employed. The numerical predictions of r_(u,avg) time – histories are generally in good agreement with the recorded values in the centrifuge experiments. In most of the cases, the numerical model managed to predict the same maximum average excess pore pressure ratio, which is the parameter that is used in drain design. To incorporate any uncertainty on the soil properties or on the characteristics of shaking, the use of a smaller pore pressure threshold for drain design is recommended. / text
10

In-situ remediation of contaminated soils using prefabricated vertical drains /

Welker, Andrea Louise, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 280-284). Available also in a digital version from Dissertation Abstracts.

Page generated in 0.0386 seconds