Spelling suggestions: "subject:"laminar mixing"" "subject:"laminar fixing""
1 |
Mixing diagnostics using particle trackingGlasgow, Craig I. January 1998 (has links)
No description available.
|
2 |
Mixing at Low Reynolds Numbers by Vibrating Cantilevered Ionic PolymersWilliams, Alicia M. 23 July 2007 (has links)
Creating mixing at low Reynolds numbers is a non-trivial challenge that has been approached from many different perspectives, using passive or active methods. This challenge been further highlighted with the rise of microfluidics. Based on the diminutive size of these devices, the Reynolds numbers are often less than 10, but have high Peclet numbers. Therefore, creating effective mixing is non-trivial and is a topic of active research, and is of paramount importance in order to improve performance of microfluidic devices in a wide range of applications.
The objective of this research was to develop a novel active device for laminar mixing. The mixing device developed herein capitalized on Nafion ionic polymers, which are a class of active materials that are thin, flexible, inexpensive, and readily deployable in an aqueous medium and offer strains up to 5% under a small (<2V) applied voltage. The effect of these deflections on an incident flow is the mixing mechanism in a laminar channel flow explored in this effort.
To the author's knowledge, the high-risk effort presented herein is the first attempt to exploit ionic polymers as an active mixing device. Several different configurations of ionic polymers were tested and Digital Particle Image Velocimetry (DPIV) measurements were obtained. Resulting analysis using a quantitative mixing metric shows that using cantilevered polymers create increases mixing potential in the flow for some actuation cases. Although these differences are present, they do not appear consistently in the results. However, only a partial set of flow information was obtained from DPIV, and an improved understanding of the effect of these polymers could be developed from additional experiments.
Using cantilevered ionic polymers for laminar mixing could foster the development of a new generation of efficient micromixing devices, which will improve the capabilities and effectiveness of numerous microfluidic technologies that range across biomedical, lab-on-a-chip, separation and sorting technologies and many more. / Master of Science
|
3 |
Numerical Simulations of Spatially Developing Mixing LayersSai Lakshminarayanan Balakrishnan (8674956) 04 May 2020 (has links)
<p>Turbulent mixing layers have been researched for many years.
Currently, research is focused on studying compressible mixing layers because
of their widespread applications in high-speed flight systems. While the effect
of compressibility on the shear layer growth rate is well established, there is
a lack of consensus over its effect on the turbulent stresses and hence
warrants additional research in this area. Computational studies on
compressible shear layers could provide a deep cognizance of the dynamics of
fluid structures present in these flow fields which in turn would be viable for
understanding the effects of compressibility on such flows. However, performing
a Direct Numerical Simulation (DNS) of a highly compressible shear layer with
experimental flow conditions is extremely expensive, especially when resolving
the boundary layers that lead into the mixing section. The attractive
alternative is to use Large Eddy Simulation (LES), as it possesses the
potential to resolve the flow physics at a reasonable computational cost.
Therefore the current work deals with developing a methodology to perform LES
of a compressible mixing layer with experimental flow conditions, with
resolving the boundary layers that lead into the mixing section through a wall
model. The wall model approach, as opposed to a wall resolved simulation,
greatly reduces the computational cost associated with the boundary layer
regions, especially when using an explicit time-stepping scheme. An in house
LES solver which has been used previously for performing simulations of jets,
has been chosen for this purpose. The solver is first verified and validated
for mixing layer flows by performing simulations of laminar and incompressible
turbulent mixing layer flows and comparing the results with the literature.
Following this, LES of a compressible mixing layer at a convective Mach number
of 0.53 is performed. The inflow profiles for the LES are taken from a
precursor RANS solution based on the k-ε
and RSM turbulence models. The results of the LES present good agreement with
the reference experiment for the upstream boundary layer properties, the mean
velocity profile of the shear layer and the shear layer growth rate. The
turbulent stresses, however, have been found to be underpredicted. The
anisotropy of the normal Reynolds stresses have been found to be in good
agreement with the literature. Based on the present results, suggestions for
future work are also discussed.</p>
|
4 |
Concept innovant d'échangeur/réacteur multifonctionnel par contrôle dynamique passif par générateurs de vorticité flexibles / Innovative concept of multifunctional heat exchanger/reactor by passive dynamic control using flexible vortex generatorsAli, Samer 01 December 2015 (has links)
Le but de cette étude est d’étudier l’utilisation d’interactions fluide-structure (FSI) pour améliorer le transfert de chaleur et les performances de mélange dans des échangeurs-réacteurs multifonctionnels, et d’évaluer des configurations pour lesquelles l’objectif est de produire et de maintenir un régime dynamique auto-entretenu d’oscillations des générateurs de tourbillons flexibles. Dans un premier temps, deux études numériques ont été réalisées pour des écoulements laminaires bidimensionnels. Les résultats montrent qu’un minimum de trois générateurs de tourbillons alternés est nécessaire pour produire une instabilité qui engendre les oscillations de larges amplitudes. L’ajout de deux promoteurs coplanaires en amont déstabilise l’écoulement en créant des forces périodiques agissant sur les générateurs de tourbillons en aval. Il en résulte une augmentation de la vitesse réduite qui impose un blocage en fréquence des oscillations des générateurs de tourbillons en aval. Dans cette configuration, des oscillations de larges amplitudes sont obtenues pour uniquement deux générateurs de tourbillons en aval. Les oscillations des générateurs de tourbillons produisent une vorticité intense qui a une incidence positive que le transfert de chaleur et sur le mélange. Dans un second temps, une configuration tridimensionnelle HEV incluant des générateurs de tourbillons trapézoïdaux flexibles orientés a 45◦ vers l’amont est étudiée par simulations numériques. Une analyse FFT réalisée sur les coefficients issus d’une analyse POD montre un pic fréquentiel correspondant aux formations et lâchers tourbillonnaires périodiques. Cette fréquence dominante correspond bien au mode propre d’oscillation des générateurs de tourbillons et engendre ainsi de larges amplitudes d’oscillations. / The aim of this study is to investigate the use of fluid-structure interaction (FSI) to improve heat transfer and mixing performances in multi-functional heat exchangers/reactors, and to evaluate configuration designs where the main target is to produce and maintain self-sustained oscillations of flexible vortex generators. At first, two dimensional laminar flow studies are numerically investigated. The results show that a minimum of three alternating flaps is needed to produce an instability that leads to large displacement oscillations. However, the introduction of two co-planar flaps upstream destabilizes the flow by creating periodic forces that act on the alternating downstream flaps. Hence, this results in artificially increasing the reduced velocity that will induce the alternating flaps to be in a lock-in state. Thus in this case, large displacement amplitudes are created with two alternating flaps only. The free flaps oscillations produce vortices of higher strength which have a positive impact on heat transfer and mixing. Secondly, a three dimensional HEV configuration with flexible trapezoidal vortex generators inclined with an angle of 45◦ with respect to the wall and reversed opposite to the flow direction is numerically investigated. Fast Fourier Transformation is applied on the temporal variation of the Proper Orthogonal Decomposition (POD) coefficientswhich displays a dominant peak in the flow and corresponds to the vortices periodic formation and detachment. This dominant frequency synchronizes well with the structural oscillation frequency and the fundamental frequency of the tabs reaching a lock-in state and leading to large oscillation amplitudes.
|
Page generated in 0.0454 seconds