• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 7
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymeric behaviour in salts of dicarboxylic acids

Ibidapo, Timothy Adesanya January 1982 (has links)
No description available.
2

Mixing at Low Reynolds Numbers by Vibrating Cantilevered Ionic Polymers

Williams, Alicia M. 23 July 2007 (has links)
Creating mixing at low Reynolds numbers is a non-trivial challenge that has been approached from many different perspectives, using passive or active methods. This challenge been further highlighted with the rise of microfluidics. Based on the diminutive size of these devices, the Reynolds numbers are often less than 10, but have high Peclet numbers. Therefore, creating effective mixing is non-trivial and is a topic of active research, and is of paramount importance in order to improve performance of microfluidic devices in a wide range of applications. The objective of this research was to develop a novel active device for laminar mixing. The mixing device developed herein capitalized on Nafion ionic polymers, which are a class of active materials that are thin, flexible, inexpensive, and readily deployable in an aqueous medium and offer strains up to 5% under a small (<2V) applied voltage. The effect of these deflections on an incident flow is the mixing mechanism in a laminar channel flow explored in this effort. To the author's knowledge, the high-risk effort presented herein is the first attempt to exploit ionic polymers as an active mixing device. Several different configurations of ionic polymers were tested and Digital Particle Image Velocimetry (DPIV) measurements were obtained. Resulting analysis using a quantitative mixing metric shows that using cantilevered polymers create increases mixing potential in the flow for some actuation cases. Although these differences are present, they do not appear consistently in the results. However, only a partial set of flow information was obtained from DPIV, and an improved understanding of the effect of these polymers could be developed from additional experiments. Using cantilevered ionic polymers for laminar mixing could foster the development of a new generation of efficient micromixing devices, which will improve the capabilities and effectiveness of numerous microfluidic technologies that range across biomedical, lab-on-a-chip, separation and sorting technologies and many more. / Master of Science
3

Variational Modeling of Ionic Polymer-Based Structures

Buechler, Miles A. 10 August 2005 (has links)
Ionomeric polymers are a promising class of intelligent material which exhibit electromechanical coupling similar to that of piezoelectric bimorphs. Ionomeric polymers are much more compliant than piezoelectric ceramics or polymers and have been shown to produce actuation strain on the order of 2\% at operating voltages between 1 V and 3 V \citep{Akle2}. Their high compliance is advantageous in low force sensing configurations because ionic polymers have a very little impact on the dynamics of the measured system. Here we present a variational approach to the dynamic modeling of structures which incorporate ionic polymer materials. The modeling approach requires a priori knowledge of three empirically determined material properties: elastic modulus, dielectric permittivity, and effective strain coefficient. Previous work by Newbury and Leo has demonstrated that these three parameters are strongly frequency dependent in the range between less than 1 Hz to frequencies greater than 1 kHz. Combining the frequency-dependent material paramaters with the variational method produces a second-order matrix representation of the structure. The frequency dependence of the material parameters is incorporated using a complex-property approach similar to the techniques for modeling viscoelastic materials. Three structural models are developed to demonstrate this method. First a cantilever beam model is developed and the material properties of a typical polymer are experimentally determined. These properties are then used to simulate both actuation and sensing response of the transducer. The simulations compare very well to the experimental results. This validates the variational method for modeling ionic polymer structures. Next, a plate model is developed in cylindrical coordinates and simulations are performed using a variety of boundary conditions. Finally a plate model is developed in cartesian coordinates. Methods for applying non-homogenious boundary conditions are then developed and applied to the cartesian coordinate model. Simulations are then compared with experimental data. Again the simulations closely match the experiments validating the modeling method for plate models in 2 dimensions. / Master of Science
4

Hydration Mechanisms in Sulfonated Polysulfones for Desalination Membrane Applications

Vondrasek, Britannia 09 July 2020 (has links)
This dissertation explores the properties of sulfonated poly(arylene ether sulfone)s for desalination membrane applications. A multi-scale approach is used to understand the relationships between the chemical structure of the polymer, the equilibrium water content, and the bulk properties. The polysulfones investigated here are aromatic polymers with relatively high ion contenremain in the glassy state at room temperature even when fully hydrated. In order to better understand the effects of water on these ionic polysulfones molecular dynamics (MD) simulation is used to investigate ion aggregation and hydration at the atomic scale. MD simulations show that the sulfonate and sodium ions are not simply paired. Instead, they form an ionic network. The molecular nature of melting water within sulfonated polysulfones is also examined by combining differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and MD simulation. Experimental evidence shows that at high ion contents, the spacing between the ionic groups impacts the amount of melting water present in the polymer. We conclude that the amount of melting water in the polymer is more closely related to geometric clustering effects than electrostatic effects. Finally, molecular-scale insight is used to understand the trends in hydrated tensile modulus and hydrated glass transition (Tg) temperatures in sulfonated polysulfones. Polymers with a more rigid backbone show different trends compared to those with a more flexible backbone. The modulus and Tg trends for the more flexible backbone are qualitatively consistent with the increase in intra-chain ionic associations (loops) predicted by the sticky Rouse model. / Doctor of Philosophy / This dissertation investigates new materials that could be used to make better membranes that can remove ions (salt) from water. Existing materials are too soft or too brittle when they are fully immersed in water. Consequently, they must be combined with more durable materials in order to make useful membranes. We would like to design durable ionic polymers (large chain-like molecules with ions attached) that interact with water and other ions in a very specific way in order to make membranes that can remove salt efficiently. The goal of this research is to create tools that can describe how changes to the chemical structure of the polymer impact how the polymer, water, and ions interact with each other so that we can improve membrane properties. We find that the ions on the polymer chain interact with each other to form threads, which can form a network inside of the polymer under the right conditions. When the ions are located far apart on the polymer chain, the ion threads link one polymer chain to another polymer chain. These ionic links strengthen the polymer network. However, when the ions are located closer together on the polymer chain, the chain starts to form loops between neighboring ions. As the number of loops increases, the polymer quickly becomes softer and more gel-like. We also find that water molecules are distributed within the polymer and are not always located next to the ions. When there is more water inside the polymer, the water molecules begin to group together to form clusters. At low temperatures, water molecules that have fewer than four neighboring molecules cannot freeze. However, water in a cluster of five molecules or more can freeze into an ice crystal. The insights gained from this research will help the community to design better polymers for desalination membrane applications.
5

Energy Harvesting Applications of Ionic Polymers

Martin, Benjamin Ryan 11 May 2005 (has links)
The purpose of this thesis is the development and analysis of applications for ionic polymers as energy harvesting devices. The specific need is a self-contained energy harvester to supply renewable power harvested from ambient vibrations to a wireless sensor. Ionic polymers were investigated as mechanical to electrical energy transducers. An ionic polymer device was designed to harvest energy from vibrations and supply power for a wireless structural health monitoring sensor.The ionic polymer energy harvester is tested to ascertain whether the idea is feasible. Transfer functions are constructed for both the open-circuit voltage and the closed-circuit current. The impedance of the device is also quantified. Using the voltage transfer function and the current transfer function it is possible to calculate the power being produced by the device.Power generation is not the only energy harvesting application of ionic polymers, energy storage is another possibility. The ionic polymer device is tested to characterize its charge and discharge capabilities. It is charged with both DC and AC currents. An energy storage comparison is performed between the ionic polymers and capacitors. While the polymers performed well, the electrolytic capacitors are able to store more energy. However, the ionic polymers show potential as capacitors and have the possibility of improved performance as energy storage devices. Current is measured across resistive loads and the supplied power is calculated. Although the power is small, the ionic polymers are able to discharge energy across a load proving that they are capable of supplying power. / Master of Science
6

Multilayer Ionic Transducers

Akle, Barbar Jawad 23 April 2003 (has links)
A transducer consisting of multiple layers of ionic polymer material is developed for applications in sensing, actuation, and control. The transducer consists of two to four individual layers each approximately 200 microns thick. The transducers are connected in parallel to minimize the electric field requirements for actuation. The tradeoff in deflection and force can be controlled by controlling the mechanical constraint at the interface. Packaging the transducer in an outer coating produces a hard constraint between layers and reduces the deflection with a force that increases linearly with the number of layers. This configuration also increases the bandwidth of the transducer. Removing the outer packaging produces an actuator that maintains the deflection of a single layer but has an increased force output. This is obtained by allowing the layers to slide relative to one another during bending. A Finite Element Analysis (FEA) method capable of modeling the structure of the multilayer transducers is developped. It is used to model the interfacial friction in multilayer transducers. Experiments on transducers with one to three layers are performed and the results are compared to Newbury's equivalent circuit model, which was modified to accommodate the multilayer polymers. The modification was performed on four different boundary conditions, two electrical the series and the parallel connection, and two mechanical the zero interfacial friction and the zero slip on the interface. Results demonstrate that the largest obstacle to obtaining good performance is water transport between the individual layers. Water crossover produces a near short circuit electrical condition and produces feedthrough between actuation layers and sensing layers. Electrical feedthrough due to water crossover eliminates the ability to produce a transducer that has combined sensing and actuation properties. Eliminating water crossover through good insulation enables the development of a small (5 mm x 30 mm) transducer that has sensing and actuation bandwidth on the order of 100 Hz. Due to the mechanical similarities of ionic transducers to biological muscles and their large flapping displacement capabilities we are studying the possibility of their use in flapping Micro Air Vehicle (MAV) application, as engines, controllers and sensors. The FEA modeling technique capable is used to design two ionic polymers actuated flapping wings. / Master of Science
7

Iontové polymery a polymerní sítě polyacetylenického typu připravené metodou kvaternizační polymerizace / Ionic polyacetylene type polymers and polymer networks by catalyst-free quaternization polymerization

Faukner, Tomáš January 2016 (has links)
(Doctoral Thesis, 2016, Mgr. Tomáš Faukner, IONIC POLYACETYLENE TYPE POLYMERS AND POLYMER NETWORKS BY CATALYST FREE QUATERNIZATION POLYMERIZATION) The composition and structure of a series of ionic π-conjugated poly(monosubstituted acetylene)s prepared via catalyst-free quaternization polymerization (QP) of 2-ethynylpyridine (2EP) activated with equimolar amount of alkyl halide [RX = ethyl bromide, ethyl iodide, nonyl bromide and haxadecyl (cetyl) bromide] as a quaternizing agent (QA) have been studied in detail. The performed QPs gave ionic polymers well soluble in polar solvents, with approximately half of pyridine rings quaternized, which implies that also non-quaternized monomers were involved in the process of QP. The configurational structure of polyacetylene main chains was suggested based on 1 H NMR, IR as well as Raman (SERS) spectral methods. The QPs in bulk gave more expected irregular cis/trans polymers while the QPs in acetonitrile solution gave high-cis polymers. A series of prepared symmetrical bi-pyridylacetylene based monomers has been polymerized via QP approach resulting into a series of new ionic π-conjugated poly(disubstituted acetylene) type materials. It is therefore obvious that the mechanism of quaternization activation frequently applied on monosubstituted...

Page generated in 0.3067 seconds