• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 54
  • 8
  • 2
  • 2
  • Tagged with
  • 250
  • 250
  • 112
  • 81
  • 60
  • 44
  • 40
  • 37
  • 37
  • 36
  • 32
  • 30
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Thermoviscoelastic characterization and predictions of Kelvar/epoxy composite laminates

Gramoll, Kurt C. January 1988 (has links)
This study consisted of two main parts, the thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material. The four orthotropic material properties, S₁₁, S₁₂, S₂₂, and S₆₆, were characterized by 20 minute static creep tests on unidirectional ([0]₈, [10]₈, and [90]₁₆) lamina specimens. The Time-Temperature-Superposition-Principle (TTSP) was used successfully to accelerate the characterization process. A nonlinear constitutive model was developed to describe the stress dependent viscoelastic response for each of the material properties. A new numerical procedure to predict long term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM ‘PC’ type computers. The program was designed for ease of use and includes graphics, menus, help messages, etc. The final phase of the study involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperature and load levels for 4 to 5 weeks. These results were then compared with the VCAP program predictions to verify the testing procedure (i.e., the applicability of TTSP in characterizing composite materials) and to check the numerical procedure used in the program. The actual tests and predictions agreed, within experimental error and scatter, for all test cases which included 1, 2, 3, and 4 fiber direction laminates. The end result of the study was the development and validation of a user friendly microcomputer program that can be used by design engineers in industry to predict thermoviscoelastic properties of orthotropic composite materials. / Ph. D.
162

On a generalized laminate theory with application to bending, vibration, and delamination buckling in composite laminates

Barbero, Ever J. January 1989 (has links)
In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical, as well as finite-element solutions of the theory, are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and post-buckling are included and used to perform stress analysis of laminated plates. A general two-dimensional theory of laminated cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modeled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects. / Ph. D.
163

Strength in notched and impact damaged laminates

El-Zein, Mohamad Samih January 1989 (has links)
The strength of notched and impact damaged laminates was studied. The solution for a plate containing an elliptic opening and inclusion was used as given by Lekhnitskii. The solution for the infinite plate, combined with laminate analysis to determine the ply stresses, and the average stress criterion proposed by Whitney and Nuismer were used to predict the notched strength. However, unlike Whitney and Nuismer, the average stress criterion was used at the ply level. The strength of off-axis unidirectional laminates was predicted by using a matrix oriented failure criterion applied at a critical point on the boundary of the hole. A good agreement between the experimental and predicted data was obtained. On the other hand, an attempt made to predict the notched strength of angle-ply laminates was not as successful. This is believed to be due to the different failure modes existing among different [± 𝛉]<sub>s</sub> laminates. The controversy on whether the characteristic dimension is a material or geometric property, together with the belief that the physics of fracture of composites is better represented at the ply level, have motivated the author to seek an invariant equation which describes the dependence of the characteristic dimension, D₀. A quantitative approach to determine the characteristic dimension in the average stress criterion was proposed. A good agreement between experimental and predicted data was found. It was also found that contrary to prior claims, the value of D₀ does not depend on the diameter of the hole, when used at the ply level. Moreover, the strength of quasi-isotropic laminates loaded at an angle ϕ with respect to the material x-axis was also studied. Again, excellent agreement between experiment and predictions was shown. The tensile strength after impact (TSAI) was investigated. An approach based on modeling the delaminated area as an elliptic inclusion was used. The difference between the compliances of the plate and the inclusion was assumed to be proportional to the ratio of the delaminated areas. At low impact energy, a reference area was used. The results obtained using this approach gave good agreement with the experimental data. / Ph. D.
164

Fatigue behavior of notched carbon epoxy laminates during reversed cyclic loads

Bakis, Charles E. January 1988 (has links)
The relationships between fatigue damage, stress redistribution, and residual stiffness and strength were investigated for notched graphite epoxy laminates during fulIy-reversed cyclic loads. Two material systems, AS4/3501-6 and AS4/1808, two lamination arrangements, (0,45,90,-45)<sub>s</sub>₄ and (0,45,0,-45)<sub>s</sub>₄, and two notch configurations, central hole and opposing semi-circular edge notches, were used to obtain a fundamental understanding of the fatigue effect in specimens under low and high cycle lifetimes. Damage was evaluated with penetrant-enhanced X-ray radiography and Iaminate deply. Tensile and compressive residual strengths were measured at three stages of damage development. A recently developed nondestructive testing technique, Stress Pattern Analysis by Thermal Emission, was implemented to obtain full-field measurements of surface stresses during damage initiation and growth. A new micromechanical theory of the adiabatic thermoelastic effect in Iaminated fiber composites was conceived to assist the interpretation of SPATE measurements. / Ph. D.
165

On a moderate rotation theory for anisotropic shells

Palmerio, Ariovaldo Felix January 1988 (has links)
The present work discusses a new moderate rotation theory for anisotropic shells, proposed by Schmidt and Reddy. All aspects of the derivations are explicitly covered and a finite element formulation of the theory is developed for the solution of test cases. Specific forms of the equations for rectangular plates, cylindrical and spherical shells are derived and the respective finite elements are implemented in a computer code. In order to compare the results, two other theories are implemented: a refined von Karman type shell theory and a shell theory proposed by Librescu. A finite element computer code based on a degenerate 2-D shell theory is also used. A set of cases involving anisotropic shells in bending, buckling and postbuckling permit an evaluation of all these models and form a basis for future developments. / Ph. D.
166

An analysis of interlaminar stresses in unsymmetrically laminated plates

Norwood, Donald Scott 05 February 2007 (has links)
The results of a numerical study of interlaminar stresses within unsymmetrically laminated plates is presented. The focus of the study is upon the linear thermoelastic response of thin square laminated composite plates subjected to extensional, compressive, or thermal loading. Symmetric and unsymmetric 0/90, +45/-45, and 0/+45 laminate stacking sequences are examined to determine the effects of mismatch between adjacent layers in Poisson’s ratio, coefficient of mutual influence, and coefficients of thermal expansion. Since the out-of-plane (transverse) deflections of unsymmetric laminates are typically large, a geometrically nonlinear kinematic description is used to account for the large displacements and rotations. The geometrically nonlinear three-dimensional boundary value problems are formulated from nonlinear elasticity theory and approximate solutions are determined using the finite element method. A total Lagrangian, displacement-based, incremental finite element formulation is implemented using Newton’s method. Geometrically nonlinear global/local finite element analysis is used to obtain improved free edge stress predictions. For laminates subjected to external loading, the mismatch in material properties between adjacent layers causes interlaminar stresses to arise near the free edges. For unsymmetric laminates under external loading, the mismatch in material properties about the geometric midplane causes out-of-plane deflections. For the laminates and loading conditions considered, the results of this study show that the out-of- plane deflections of unsymmetric laminates reduce interlaminar shear stresses. In addition, the out-of-plane deflections reduce interlaminar normal stresses for some laminates and increase these stresses for others. For the two-layer unsymmetric laminates considered, the effect of out-of-plane deflections upon interlaminar normal stress was shown to be dependent upon the type of in-plane strain mismatch (i.e., normal and/or shear) caused by the dissimilar material properties. The results also show that as the out-of-plane deflections become large, the effects of geometric nonlinearity upon this stress-deformational response become important. These conclusions apply to extensional, compressive (prior to a change in mode shape), and thermal loading. The numerical results include interlaminar stresses for laminated plates which have buckled as a wide column under compressive loading. / Ph. D.
167

Geometric and material nonlinear effects in elastic-plastic and failure analyses of anisotropic laminated structures

Rourk, Dave January 1986 (has links)
In this study, an analytical procedure to predict the strength and failure of laminated composite structures under monotonically increasing static loads is presented. A degenerated 3-D shell finite element that includes linear elastic and plastic material behavior with full geometric nonlinearity is used to determine stresses at selected points (Gauss quadrature points in each element) of the structure. Material stiffness (constitutive) matrices are evaluated at each Gauss point, in each lamina and in each element, and when the computed stress state violates a user selected failure criterion, the material stiffness matrix at the failed Gauss point is reduced. The reduction procedure involves setting the material stiffnesses to unity. Examples of isotropic, orthotropic, anisotropic and composite laminates are presented to illustrate the validity of the procedure developed and to evaluate various failure theories. Maximum stress, modified Hills (Mathers), Tsai-Wu (F₁₂ = 0), and Hashin's failure criteria are included. The results indicate that for large length-to-thickness ratios, the geometric nonlinear effect should be incorporated for both isotropic and anisotropic structures. The nonlinear material model influences the behavior of isotropic structures with small length-to-thickness ratios, while having nearly no effect at all on laminated anisotropic structures. Of the four failure theories compared, each predicts failure at nearly the same load levels and locations. Hashin's criterion is particularly noteworthy in that the mode is also predicted. / Ph. D.
168

Prediction model for the onset of edge-effect delamination at holes in composite laminates

Shalev, Doron January 1988 (has links)
Composite laminates are prone to delamination at free edges, straight edges or at holes, due to the mismatch at interfaces where two adjacent plies have different fiber orientations and/or different material properties. The linear analysis of the mismatch at the edge results in a mathematical singularity. That phenomenon occurs in a boundary layer and has to be treated mathematically and physically as such. In the literature it is called the "Boundary Layer Effect" or simply the "Edge Effect". It is of great importance to recognize and be able to predict delamination locations at edges prone to such events. The goal of this research was to create a model capable of providing such a prediction. In an effort to generalize the model, the more complicated case of a free edge at holes in the composite laminate was chosen rather than the case of a straight free edge. A sequel of three major efforts was completed: 1) Development of the analysis of the free-edge effect at a hole in a composite laminate, 2) Performance of an extensive experimental program to provide data for the creation of the prediction model, and 3) On the basis of the analysis, establishment of the model, and comparison with the experimental results. The prediction model consists of two major products of the analysis, the order of the singularity and the strain energy release rate. Both are useful in locating the interface most prone to delaminate and the point along the hole circumference where it initiates. Two material systems (AS4/3501-6 and AS4/1808) and two stacking sequences [(0/45/0/-45)<sub>s</sub>)₄] and [ (0/45/90/-45)<sub>s</sub>)₄]s , quasi-orthotropic and quasi-isotropic respectively, were quasi-statically tested under tension and compression. The specimens were X-rayed after each loading stage in order to locate the initiation of delaminations. The fact that both materials consisted of the same type of fibers, was an excellent opportunity to examine the performance of the matrix and its influence on the process of delamination. Matrix dependent behavior was successfully examined and studied through the experiments and the prediction model. Results showed good correlation and high sensitivity to the type of matrix material involved. / Ph. D.
169

Instability-related delamination growth of embedded and edge delaminations

Whitcomb, J. D. January 1988 (has links)
Compressive loads can cause local buckling in composite laminates that have a near-surface delamination. This buckling causes load redistribution and secondary loads, which in turn cause interlaminer stresses and delamination growth. The goal of this research effort was to enhance the understanding of this instability-related delamination growth in laminates containing either an embedded or an edge delamination. There were three primary tasks: 1) development of a geometrically nonlinear finite element analysis named NONLIN3D; 2) performance of a parametric analytical study to determine the effects of strain, delamination shape, and delamination size on the distribution of the strain energy release rate components along the delamination front; and 3) performance of a combined experimental and analytical study of instability-related delamination growth (IRDG). Two material systems (AS4/PEEK and IM7/8551-7) and two stacking sequences (0/90/90/0)₆ and (90/0/0/90)₆ were examined. The laminates were fabricated with Kapton inserts between the fourth and fifth plies from the top surface to give an initial delamination. The analysis predicted a large variation of G<sub>I</sub> and G<sub>II</sub> along the delamination front. The G<sub>III</sub> component was always small. The location of maximum G<sub>I</sub> and G<sub>II</sub> depended on the delamination shape and applied strain. In general, the strain-energy release rates were small except in a small region. Hence, delamination growth was expected to occur over only a small portion of the delamination front. Experiments corroborated this prediction. The laminate stacking sequence had a large effect on the shape of the deformed region, the direction of delamination growth, and the strain at which delamination growth occurred. These effects were predicted by the analysis. The G<sub>I</sub> component appeared to govern initial delamination growth in the IM7/8551-7 laminates. Matrix ply cracking generally accompanied delamination growth. In some cases fiber micro-buckling also occurred shortly after delamination growth occurred. / Ph. D.
170

Lamb wave propagation in laminated composite plates

Tang, Bruce S. January 1988 (has links)
Low frequency Lamb waves in composite laminates were investigated theoretically and experimentally. To have a general solution for Lamb wave propagation in multilayered composite laminates is not practical due to a large number of boundary conditions needed to be satisfied at the interlaminar interfaces. Various approximate theories have been proposed to model low frequency Lamb wave propagation in composite laminates. In the present study, an approximate solution was derived from an elementary shear deformation plate theory and was shown to work well in the low frequency, long wavelength region. A simple method, similar in configuration to the acousto-ultrasonic technique, was used to measure Lamb wave phase velocities. Low frequency Lamb waves, usually in the range of 10 kHz to 1 MHz, were generated. Dispersion curves of the lowest symmetric Lamb mode and the lowest antisymmetric Lamb mode were obtained. The experimental data were compared with the results obtained from the approximate solution for the lowest Lamb modes in the low frequency, long wavelength region for a unidirectional laminate, a symmetric cross-ply laminate, a symmetric quasi-isotropic laminate and an aluminum plate. There is good correlation between the data and the results obtained from the approximate solution, which suggests that the lowest Lamb modes are modeled adequately by the present theory in these cases. This experimental procedure of measuring phase velocities can be used to characterize laminated composite plates with and without damage since each material and stacking sequence gives distinct lowest symmetric and antisymmetric curves. Stiffness reduction of composite laminates caused by damage can be related to the change in Lamb wave propagation speed. Damage in the form of transverse cracks in the 90° plies of a [90/90/90/0], graphite/epoxy laminate reduced the phase velocities of the Lamb modes. The lowest antisymmetric mode is sensitive to stiffness reduction in composite plates. Consequently, axial stiffness reduction in [0/45/0/45/0/45], and [0]₁₂ woven graphite/polyimide composite laminates was monitored by the lowest antisymmetric Lamb mode. / Ph. D.

Page generated in 0.0786 seconds