• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 54
  • 8
  • 2
  • 2
  • Tagged with
  • 250
  • 250
  • 112
  • 81
  • 60
  • 44
  • 40
  • 37
  • 37
  • 36
  • 32
  • 30
  • 26
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Stratégie non-intrusive de couplage plaque/3D pour la simulation des assemblages de plaques composites stratifiées / A nonintrusive plate/3D coupling strategy for the simulation of laminated plates assemblies

Guguin, Guillaume 12 November 2014 (has links)
Cette thèse s'inscrit dans le cadre des méthodes de couplage non-intrusives qui permettent de concilier deux types de logiciels : logiciels commerciaux généralistes et logiciels dédiés. L'objectif est d'appliquer un tel couplage pour le traitement des assemblages de plaques stratifiées.En effet, le comportement aux environs des zones critiques de ces matériaux composites nécessite une prise en compte fine (3D) des phénomènes en jeu alors que la pratique industrielle consiste à représenter les structures par des modèles simplifiés de plaques ou de coques.La méthode non-intrusive développée ici permet ainsi de « patcher » virtuellement le modèle plaque par des modèles 3D locaux, de coupler fortement le modèle global avec les patchs, sans modifier les maillages ni les modèles.Diverses stratégies de raccords sont envisagées, ainsi que des améliorations à la technique de couplage. / This thesis is part of the nonintrusive coupling methods framework which allow to merge to kind of software : general commercial software and dedicated software.The aim is to apply such coupling for the analysis of assembly of laminated plates.In fact, the behavior in composite material around critical zones requires to take in account complex phenomena (in 3D), whereas the industrial way of work is to simplify the structure with plate or shell model in order to handle very large structures.The nonintrusive coupling method developed here allow to virtually apply a 3D patch to the plate model in order to enriched the global description without any modification of the global meshes, models, or solver.Various methods of coupling and improvement to the classical nonintrusive coupling are proposed.
202

Analise de estruturas tridimensionais de laminados atraves de metodo dos elementos de contorno / Analysis of structures three-dimensional of symmetric laminated by boundary element method

Hoefel, Simone dos Santos 23 February 2006 (has links)
Orientador: Paulo Sollero / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-07T00:33:38Z (GMT). No. of bitstreams: 1 Hoefel_SimonedosSantos_D.pdf: 926109 bytes, checksum: 6968cbf6729fc86ee69728a2e4739116 (MD5) Previous issue date: 2006 / Resumo: Neste trabalho é desenvolvida uma formulação do método dos elementos de contorno para análise de estruturas formadas pela associação espacial de placas de laminados compósitos. Inicialmente, as formulações do método dos elementos de contorno, desenvolvida para pro­blemas de elasticidade plana e de flexão em placas finas para materiais anisotrópicos, são as­sociadas obtendo-se uma estrutura plana, denominada macro-elemento. Um macro-elemento contém simultaneamente os estados de flexão em placas finas e extensão (chapa) e possui quatro graus de liberdade por nó, sendo eles: deslocamento normal, tangencial e transver­sal e rotação normal. O modelo final assume uma associação desses macro-elementos no espaço. Cada macro-elemento é tratado como uma sub-região do MEC. As equações de cada sub-região, após as transformações de coordenadas, são acopladas através de equações de equilíbrio e compatibilidade. O tratamento numérico é feito através do método dos elemen­tos de contorno usando elementos constantes e quadráticos. Com o objetivo de validar a formulação desenvolvida, vários exemplos numéricos são analisados, os resultados obtidos são comparados com resultados analíticos e numéricos disponíveis na literatura / Abstract: In this work a boundary element formulation is developed for the analysis of structures formed by three-dimensional association of symmetric laminated composite plates. Initially, the boundary element formulations developed for plane elasticity anisotropic problems and bending of anisotropic thin plate problems are associated in one plane structure with four degrees of freedom per node given by normal, tangential and transverse displacements and normal rotations. Then, the formulation is extended in order to allow the plane assembling of these structures. In the two-dimensional formulation, each plane element is defined as macro­element containing out-of-plane (bending) and in plane (stretching) degrees of freedom. The final system is obtained by assuming each individual plane structural element as a sub-­domain. After the necessary transformation of these equations, they can be combined in order to take into account displacement compatibilities and traction equilibrium conditions. The numerical treatment is carried out by the direct boundary element method. Numerical examples are presented and their results are compared to results available in literature / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
203

Stress Intensity Factors For Bimaterial Interfacial Cracks : A Weight Function Approach

Vinu, P 07 1900 (has links) (PDF)
No description available.
204

Analysis Of Delaminations In Tapered And Stiffened Laminated Composite Plates

Vijayaraju, K 07 1900 (has links) (PDF)
No description available.
205

Failure analysis of a quasi-isotropic laminated composite plate with a hole in compression

Iyengar, Nirmal 10 July 2009 (has links)
The ability to predict failure of laminated composites in compression has been doggedly pursued by researchers for many years. Most have, to a limited extent, been able to predict failure for a narrow range of laminates. No means, as yet, exist for predicting the strength of generic laminates under various load conditions. Of primary concern has been the need to establish the mode at failure in compression. Even this has been known to vary for fiber and matrix dominated laminates. This study has been carried out to analyze the failure of specimens with a hole made of laminates with various quasi-isotropic stacking sequences. Different stacking sequences are achieved by rotating a [±45/90/0]s stacking sequence laminate as a whole with respect to the loading axis of the specimens. Two- and three-dimensional finite element models, using commercial packages, were generated to evaluate the stresses in the region of the hole. Two different compressive failure prediction techniques based on distinctly different failure modes have been used. The validity of these techniques was measured against experimental data of quasi-isotropic specimens tested. To investigate the applicability of the failure criteria for different laminated composite plates, analyses were repeated for specimens with different stacking sequences resulting from the rotation of the laminate. The study shows the need for the use of three-dimensional analysis of the stress state in the vicinity of the hole in order to be able to accurately predict failure. It also shows that no one mode of failure is responsible for limiting the strength for all laminate orientations but rather the mode changes with change in stacking sequence. The failure of the laminate with a hole was seen to be very sensitive to the stacking sequence. Experimental data presented also shows that the peak strength obtainable from the laminate analyzed, [±45/90/0]s, is going to be in the off-axis configuration rather than on-axis placement of the stacking sequence with respect to the loading direction. / Master of Science
206

Compression of thick laminated composite beams with initial impact-like damage

Breivik, Nicole L. 05 September 2009 (has links)
While the study of compression after impact of laminated composites has been under consideration for many years. the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating. low velocity impact by large diameter objects can be simulated using quasistatic three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches 'thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type. extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delaminations. damage near the surface. and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results. It was found that specimens with multiple through-thickness delaminations experienced the greatest reduction in compression strength, from 50 to 75% below the strength of undamaged specimens. All the sublaminates formed by the delaminations failed at the same time. Individual sublaminate buckling was observed for isolated delaminations near 'the surface of the laminate. Delaminations far from the specimen surface had little effect on the final compression strength. Damage occurring in the outside 00 plies caused a 10 to 200/0 strength reduction according to both analytical and experimental results. The effects of increased interlaminar stresses near the specimen edges caused a reduction in undamaged strength of [05/455/-455/905]55 specimens, while having little effect on the [Osl60sl-605]75 specimens. / Master of Science
207

Notched strength analysis of tensile specimens taken from a thick, filament-wound graphite/epoxy pressure vessel

Gagnon, Paul January 1987 (has links)
An experimental analysis of specimens taken from a thick, filament-wound composite material pressure vessel (cylinder) was performed by testing tensile coupons with various semi-elliptical surface notches. The strength of specimens with small notches was found to be notch insensitive. The strength of specimens with larger notches depended on the size of the notch. The fracture toughness of the laminate was found by applying a general fracture-toughness parameter approach. Using this value, several approaches were employed to predict failure loads. The accuracy of the approaches depended on the size of the notches. In general, the linear-elastic fracture mechanics method overpredicted the failure strength of specimens with intermediate sized notches, but predicted failure strength accurately for specimens with large notches. A strength of materials approach accurately predicted notched strength only for specimens with small notches. Notched strength was more accurately predicted for all notch sizes using an empirical approach, with the notch area used to predict failure instead of the notch depth, which was used in the linear-elastic fracture mechanics and strength of materials approaches. / M.S.
208

Delamination initiation in postbuckled dropped-ply laminates

Dávila, Carlos G. 28 July 2008 (has links)
The compression strength of dropped-ply, graphite-epoxy laminated plates for the delamination mode of failure is studied by analysis and corroborated with experiments. The nonlinear response of the test specimens is modeled by a geometrically nonlinear finite element analysis. The methodology for predicting delamination is based on a quadratic interlaminar stress criterion evaluated at a characteristic distance from the ply drop-off. The details of the complex state of stress in the region of the thickness discontinuity are studied using three-dimensional solid elements, while the uniform sections of the plate are modeled with quadrilateral shell elements. A geometrically nonlinear transition element was developed to couple the shell elements to the solid elements. The analysis was performed using the COmputational MEchanics Testbed (COMET), an advanced structural analysis software environment developed at the NASA Langley Research Center to provide a framework for research in structural analysis methods. Uniaxial compression testing of dropped-ply, graphite-epoxy laminated plates has confirmed that delamination along the interfaces above and/or below the dropped plies is a common mode of failure initiation. The compression strength of specimens exhibiting a linear response is greater than the compression strength of specimens with the same layup exhibiting geometrically nonlinear response. Experimental and analytical results also show a decrease in laminate strength with increasing number of dropped plies. For linear response there is a large decrease in compression strength with increasing number of dropped plies. For nonlinear response there is less of a reduction in compression strength with increasing number of dropped plies because the nonlinear response causes a redistribution and concentration of interlaminar stresses toward the unloaded edges of the laminate. / Ph. D.
209

Interlaminar stress analysis of dropped-ply laminated plates and shells by a mixed method

Harrison, Peter Newton 10 October 2005 (has links)
A mixed method of approximation based on Reissner's variational principle is developed for the linear analysis of interlaminar stresses in laminated composites, with special interest in laminates that contain terminated internal plies (dropped-ply laminates). Two models are derived, one for problems of generalized plane deformation and the other for the axisymmetric response of shells of revolution. A layerwise approach is taken in which the stress field is assumed with an explicit dependence on the thickness coordinate in each layer. The dependence of the stress field on the thickness coordinate is determined such that the three-dimensional equilibrium equations are satisfied by the approximation. The solution domain is reduced to one dimension by integration through the thickness. Continuity of tractions and displacements between layers is imposed. The governing two-point boundary value problem is composed of a system of both differential and algebraic equations (DAEs) and their associated boundary conditions. Careful evaluation of the system of DAEs was required to arrive at a form that allowed application of a one-step finite difference approximation. A two-stage Gauss implicit Runge-Kutta finite difference scheme was used for the solution because of its relatively high degree of accuracy. Patch tests of the two models revealed problems with solution accuracy for the axisymmetric model of a cylindrical shell loaded by internal pressure. Parametric studies of dropped-ply laminate characteristics and their influence on the interlaminar stresses were performed using the generalized plane deformation model Eccentricity of the middle surface of the laminate through the ply drop-off was found to have a minimal effect on the interlaminar stresses under longitudinal compression, transverse tension, and in-plane shear. A second study found the stiffness change across the ply termination to have a much greater influence on the interlaminar stresses. Correlations between the stiffness ratio of the thick to the thin sections of the laminates and the magnitude of a parameter based on a quadratic delamination criterion were found to be surprisingly good for longitudinal compression and in-plane shear loadings. For laminates with very stiff terminated plies loaded in longitudinal compression, inclusion of a short insert of softer composite material at the end of the dropped plies was found to significantly reduce the interlaminar stresses produced. / Ph. D.
210

Effect of fiber/Matrix Interphase on the Long Term Behavior of Cross-Ply Laminates

Subramanian, Suresh 25 January 2008 (has links)
A systematic study was conducted to examine the influence of fiber surface treatment and sizing on the formation of fiber-matrix interphase and its effects n the mechanical properties of composite laminates. Three material systems having the same Apollo graphite fibers and HC 9106-3 toughened epoxy matrix, but with different fiber surface treatments and sizings were used in this study. The fibers used in the 810A and 820 A systems received 100% and 200% industry standard surface treatments respectively and were sized with Bisphenol-A unreacted epoxy material. The 810 O system was manufactured with 100% surface treated fibers that were sized with pvp (polyvinylpyrrolidone), a thermoplastic material. The presence of different interphase in these materials was confirmed using a permanganic etching technique. Results indicate that the interphase is discontinuous and made of linear chain polymeric material in the 810 A system. The interphase in the 810 O system has a gradient morphology while the 820 A system does not possess a well defined interphase. Mechanical test results indicate that the 810 O system significantly greater longitudinal tensile strength and failure strain compared to the 810 A system. The 810 A and 820 A systems have similar longitudinal tensile properties. Transverse tensile test results indicate that the 820 A system has the highest strength while the 810 O system has the lowest strength. The (0,90₃), cross-ply laminates from the three material systems exhibit different damage mechanisms and failure modes under monotonic tensile loading. Fatigue test results indicate that the 810 O laminates have longer fatigue lives at higher load levels and shorter fatigue lives at lower load levels compared to the 810 A laminates. The 820 A laminates have longer life compared to the other two materials systems, at all three load levels. The 810 O material exhibits greater damage and stiffness reduction than the other two materials. The 810 A and 820 A systems exhibit a brittle stress concentration controlled failure, while the pvp sized 810 O system exhibits a global strain conuolled failure. A micromechanics model was developed to investigate the role of the interphase on the tensile strength of unidirectional laminates. A new parameter called the ‘efficiency of the interface’, is introduced in the model. A simple scheme that uses the experimentally determined tensile modulus of unidirectional laminates in a concentric cylinders model, is described to estimate the interfacial efficiency. The tensile fatigue performance of cross-ply laminates is predicted using this micromechanics model in a cumulative damage scheme. The predicted fatigue lives and failure modes agree well with experimental results. / Ph. D.

Page generated in 0.1125 seconds