• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Environmental exposure assessment of metals from reclaimed land in Halmstad harbour : Sweden  Part of an environmental risk assessment

Assarsson, Karin January 2015 (has links)
The harbour land fill in Halmstad has been described in the news as one of the most polluted areas in Halland County based on the a survey from the Swedish environmental protection agency. In order to identify the extent and severity of the situation several environmental investigations have been performed in this area. This report is based on available data from investigations and environmental reports from WSP, Höganäs AB, HEM and Halmstad municipality. This investigation focus on an “Area C” within the land fill where the main land fill material is i.a. slag from a steel work, construction waste, dredge spoil, waste from glass production and a casting shop. Of these material the focus have been on the metal rich slag from the steel work and its possible environmental impact. The environmental exposure of Hg, Pb, Cd, Cr, Zn, Ni, Mo and V have been calculated as an annual load from Area C. Unfortunately the data available for this investigation has not been complete, e.g. slag concentration data with corresponding leachate data was only obtained for one year. The groundwater data and land fill metal concentrations have been measured only once. This made it impossible to investigate e.g. annual variations like ageing effects of the material or weather variations, variation in the properties of the deposed slag material and statistical significance in differences could not be calculated. Further characterisation of the land fill would be worthwhile in order to be able to draw some conclusions. Calculations of the environmental load has been performed based on concentration in the slag, the land fill, the leachate data of the slag and groundwater concentrations. A model has been developed to calculate the weighted land fill metal concentration. The partitioning coefficient, Kd; between soil and liquid has been calculated and used to estimate the environmental load. It was assumed that the groundwater data was the most reliable data, which indicated that the exposure may be higher than from common soil, especially for Pb and Mo. Relating the environmental exposure values with guideline values based on MKM (less sensitive land use)-land using HQ (hazard quotient) indicates a decreasing risk in the order Pb>V>Mo. However, the exposure is well below that from MKM soil which could be assumed, according to Swedish environmental protection agency guideline values, to be an acceptable exposure.
2

Hydraulic Fill Assessment Model Using Weathered Granitoids Based on Analytical Solutions to Mitigate Rock Mass Instability in Conventional Underground Mining

Portocarrero-Urdanivia, Cristhian, Ochoa-Cuentas, Angela, Arauzo-Gallardo, Luis, Raymundo, Carlos 01 January 2021 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / This study uses analytical solutions to assess a hydraulic fill model based on weathered granitoid to increase underground opening stability and mitigate rock bursts during mining operations in a conventional underground mining company located in the Coastal Batholiths of the Peruvian Andes. This study assesses the previous geological database provided by the mine, analyzes the on-site strengths produced by the exploitation works that will subsequently be filled, identifies the quality of the material used in the landfill (granitoids) through laboratory tests, and compares compressive strength at different depths, all contemplated within the landfill model used. This study focuses on the applicability of hydraulic fills in conventional underground mine using natural geological material such as granitoid. / Revisión por pares

Page generated in 0.0813 seconds