Spelling suggestions: "subject:"landau theory"" "subject:"candau theory""
11 |
Ginzbutrg-Landau theory with hidden order parameter applied to interface superconductivity / TEORIA DE GINZBURG-LANDAU COM PARÃMETRO DE ORDEM ESCONDIDO APLICADA AO ESTUDO DA SUPERCONDUTIVIDADE DE INTERFACEVICTOR NOCRATO MOURA 21 February 2017 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / In recent years, several experiments have been reported in which interface superconductivity was observed in heterostructures of different materials, inclunding non-superconductors. The origin of this superconductivity has not yet been elucidated and there is no well-established theory to explain this phenomenon. In 2015 a model based on the Ginzburg-Landau theory was proposed that would explain the interface superconductivity phenomenon assuming a system with two order parameters. It has been proposed that the order parameter characterizing the bulk material with a defective or doped layer permits the formation of a second parameter which competes with the former and prevails over it in the vicinity of the interface. The superconductivity at the interface is then explained by the growth of this second order parameter only in this region, remaining still ``hidden" inside the bulk. The model was applied to a one-dimensional system with an interface, which presented a surprising result: the ``hidden" superconductivity appers in quantized critical temperatures, this allowing the existence of several eigenstates of the system, with different critical temperatures. In this dissertation, we use this model and investigate the unfolding of hidden superconductivity and its quantized temperatures. We observe that the interfaces resemble one-dimensional quantum wells, with the critical temperature playing the role of the energy in the quantum case. Following this idea we use numerical methods to solve the Ginzburg-Landau equations for a system with an arbitrary number of parallel interfaces. Our results show that in this case, the critical temperatures are quantized and degenerate when the interfaces are very separated, but it has its degeneracy broken when we approach the interfaces, as it happens in a lattice of square wells. We then proposed a tight-binding model to estimate critical temperatures on parallel interfaces and verified the validity of this approximation through the numerical solution of the complete problem. We also analyze the vortex states for a square two-dimensional defect, verifying the possibility of creating or destroying vortices in the region of `` hidden" superconductivity through an external magnetic field. / Nos Ãltimos anos foram reportados diversos experimentos em que a supercondutividade de interface foi observada em heteroestruturas de diferentes materiais, inclusive em nÃo-supercondutores extit{a priori}. A origem dessa supercondutividade ainda nÃo foi elucidada e nÃo existe uma teoria bem estabelecida para explicar esse fenÃmeno. Em 2015 foi proposto um modelo com base na teoria de Ginzburg-Landau que explicaria o fenÃmeno de supercondutividade de interface assumindo um sistema com dois parÃmetros de ordem. Foi proposto que o parÃmetro de ordem que caracteriza o material extit{bulk} com uma camada defeituosa, ou dopada, permite a formaÃÃo de um segundo parÃmetro que compete com o primeiro e prevalece sobre ele nas proximidades da interface. A supercondutividade na interface à entÃo explicada pelo crescimento deste segundo parÃmetro de ordem apenas nesta regiÃo, permancecendo ainda ``escondido" dentro do extit{bulk}. O modelo foi aplicado para um sistema unidimensional com uma interface, apresentando um resultado surpreendente: a supercondutividade escondida aparece em temperaturas crÃticas quantizadas, podendo entÃo existir vÃrios autoestados do sistema, com diferentes temperaturas crÃticas. Nessa dissertaÃÃo utilizamos esse modelo e investigamos os desdobramentos da supercondutividade escondida e suas temperaturas quantizadas. Percebemos que as interfaces assemelham-se com poÃos quÃnticos unidimensionais, com a temperatura crÃtica fazendo o anÃlogo ao da energia no caso quÃntico. Seguindo essa ideia utilizamos mÃtodos numÃricos para resolver as equaÃÃes de Ginzburg-Landau para um sistema com um nÃmero arbitrÃrio de interface paralelas. Nossos resultados mostram que neste caso, as temperaturas crÃticas, alÃm de quantizadas, sÃo degeneradas quando as interfaces estÃo muito separadas, mas tem essa degenerescÃncia quebrada quando aproximamos as interfaces, como ocorre em uma rede de poÃos quadrados. Propusemos entÃo um modelo tipo extit{tight-binding} para estimar temperaturas crÃticas em interfaces paralelas e verificamos a validade dessa aproximaÃÃo atravÃs da soluÃÃo numÃrica do problema completo. Analisamos tambÃm os estados de vÃrtices para um defeito bidimensional quadrado, verificando a possibilidade de se criar ou destruir vÃrtices na regiÃo de supercondutividade escondida atravÃs de um campo magnÃtico externo.
|
12 |
Aspects of thermal field theory with applications to superconductivityMetikas, Georgios January 1999 (has links)
No description available.
|
13 |
Numerical studies of superfluids and superconductorsWiniecki, Thomas January 2001 (has links)
In this thesis we demonstrate the power of the Gross-Pitaevskii and the time-dependent Ginzburg-Landau equations by numerically solving them for various fundamental problems related to superfluidity and superconductivity. We start by studying the motion of a massive object through a quantum fluid modelled by the Gross-Pitaevskii equation. Below a critical velocity, the object does not exchange momentum or energy with the fluid. This is a manifestation of its superfluid nature. We discuss the effect of applying a constant force to the object and show that for small forces a vortex ring is created to which the object becomes attached. For a larger force the object detaches from the vortex ring and we observe periodic shedding of rings. All energy transfered to the system is contained within the vortex rings and the drag force on the object is due to the recoil of the vortex emission. If we exceed the speed of sound, there is an additional contribution to the drag from sound emission. To make a link to superconductivity, we then discuss vortex states in a rotating system. In the ground state, regular arrays of vortices are observed which, for systems containing many vortices, mimic solid-body rotation. In the second part of the thesis, we initially review solutions to the Ginzburg-Landau equations in an applied magnetic field. For superconducting disks we observe vortex arrays similar to those in rotating superfluids. Finally, we study an electrical current flow along a superconducting wire subject to an external magnetic field. We observe the motion of flux lines, and hence dissipation, due to the Lorentz force. We measure the V – I curve which is analogous to the drag force in a superfluid. With the introduction of impurities, flux lines become pinned which gives rise to an increased critical current.
|
14 |
Étude théorique des instabilités de type ferroïques dans des géométries confinées et des réseaux distordus / Theoretical investigation of ferroic instabilities in confined geometries and distorted latticesQiu, Ruihao 13 September 2017 (has links)
Dans cette thèse de doctorat nous présentons une étude théorique de deux types d'instabilitésferroélectriques: celles apparaissant dans des géométries confinés et celles induites par le magnétismedans dans composés massifs de structure perovskite. Dans une première partie nous abordons leproblème des instabilités ferroélectriques apparaissant dans des nanotubes et des nanocoquillesoù nous développons un modèle théorique phénoménologique approprié à ces structures. Nousétudions comment l'émergence de la polarisation est affectée par (i) l'épaisseur des nanostructures,(ii) par la réponse diélectrique des matériaux environant la couche ferroélectrique et (iii) les conditionsaux interfaces. Nous observons un effet de taille finie topologique qui peut promouvoirune compétition inhabituelle entre deux types de distribution de la polarization, irrotationel eten vortex, dans la limite des très petites épaisseurs. Dans une deuxième partie nous utilisons descalculs ab-initio à base de la théorie de la fonctionnelle de la densité pour étudier les instabilitésferroélectriques des perovskites manganites à base de terres rares (RMnO3). A partir de ces calculsnous prédisons qu'il est possible d'induire une transition de phase sous pression dans EuMnO3 lefaisant transiter d'un ordre antiferromagnétique de type A isolant vers un ordre ferromagnétiquemétallique sous pression. Ce type de transition n'avait jamais été reporté précédemment dans lesmatériaux RMnO3. Nous étendons ensuite cette analyse à l'étude des effets de strain épitaxial dansles films minces de TbMnO3 et EuMnO3. Nos résultats montrent que le diagramme de phase souscontrainte d'épitaxie est bien plus riche que celui sous pression hydrostatique. Nous trouvons queles types antiferromagnétiques E-AFM et E*-AFM sont stabilisés dans le cas de TbMnO3, où letype E*-AFM est une phase métallique polaire. Dans le cas de EuMnO3, nous trouvons une phaseantiferromagnétique de type E qui n'a pas été observée sous pression hydrostatique. / In this thesis, we present a theoretical study of two types of ferroic instabilities: the ferroelectric instability in novel confined geometries and magnetic instabilities controlled by the distortion of the underlying crystal lattice. On the one hand, we consider in detail the ferroelectric instability, specifically, in the nanotubes and the spherical nanoshells and develop a phenomenological theory for describing such an instability. We determine how the emergence of polarization is affected bythe thickness of the nanoparticle, the dielectric properties of the surrounding media and the interfacial boundary conditions. We finnd an intriguing topological finite-size effect that can promote an unexpected competition between two different types of distribution of polarization - irrotational and vortex-like - in the ultra-thin limit. One the other hand, we employ a different formalism to investigate the structural, electronic and magnetic properties of the rare-earth manganites. Specifically,we conduct a theoretical investigation from first-principles calculations. First, we predict a pressure-induced A-AFM insulator to FM metal transition on EuMnO3 under hydrostatic pressure, that is unprecedented in the multiferroic rare-earth manganites RMnO3. This investigation is extended to the study to the epitaxial strain effects on both EuMnO3 and TbMnO3 thin films. We show that epitaxial strain generates a much richer phase diagram compared to hydrostatic pressure. We predict novel magnetically-induced insulator { metal and polar { non-polar transitions. More specifically, we find that both the multiferroic E-AFM order and the polar metallic E*-AFM state are stabilized in TbMnO3 by means of epitaxial strain. In the contrast, we find a novel epitaxial-strain-induced multiferroic E-AFM state in EuMnO3 that cannot be obtained by means of just hydrostatic pressure.
|
15 |
Superconductivity at its Limit: Simulating Superconductor Dynamics Near the Superconducting Superheating Field in Eilenberger and Ginzburg-Landau TheoryPack, Alden Roy 13 April 2020 (has links)
We computationally explore the dynamics of superconductivity near the superheating field in two ways. First, we use a finite element method to solve the time-dependent Ginzburg-Landau equations of superconductivity. We present a novel way to evaluate the superheating field Hsh and the critical mode that leads to vortex nucleation using saddle-node bifurcation theory. We simulate how surface roughness, grain boundaries, and islands of deficient Sn change those results in 2 and 3 spatial dimensions. We study how AC magnetic fields and heat waves impact vortex movement. Second, we use automatic differentiation to abstract away the details of deriving the equations of motion and stability for Ginzburg-Landau and Eilenberger theory. We present calculations of Hsh and the critical wavenumber using linear stability analysis.
|
16 |
Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteursStenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
|
17 |
Théorie de Landau de cristallisation et l'approche d'ondes de densité dans les systèmes complexes / Landau theory of crystallization and density waves approach in complex systemsKonevtsova, Olga 29 November 2013 (has links)
Le nombre croissant de nanostructures physiques et biologiques sont caractérisées par l'ordre non-cristallin et par les propriétés physiques et biologiques non-conventionnels. Parmi ses systèmes il faut distinguer les capsides virales. Ces coquilles solides qui sont formées par un certain nombre dec opies de la même protéine protègent le virus des agressions et facilitent le processus d'infection de la cellule hôte. La distribution des positions de protéines dans une capside est très régulière et montre un degré très élevé d'ordre, aussi bien orientationnel que positionnel. Les capsides virales de topologie sphérique possèdent la symétrie icosaédrique compatible avec l'ordre cristallin local, mais incompatible avec la symétrie cristalline globale et interdite dans les structures périodiques.Ici, sur l'exemple des Papovavirus, nous montrons l'existence d'un nouveau type d'organisation qui résulte dans l'ordre quasicristallin pentagonal chiral de protéines dans des capsides de topologie sphérique et géométrie dodécaédrique. La formation de cet ordre est décrite dans le cadre de la théorie de Landau de cristallisation. Les particularités de la structure sont élucidées grâce à la théorie d'élasticité des quasicristaux comme le résultat de la déformation phason nonlinéaire.La généralisation de la théorie de Landau de cristallisation que nous proposons permet également de décrire des structures quasicristallines octogonales et décagonales grâce à la minimisation contrainte de l'énergie libre, et donne un nouveau sens physique à la notion de « fenêtre de projection » utilisée dans la cristallographie multidimensionnelle. / A growing number of physical and biological nanostructures are characterized by non-crystallineorder and by unconventional physical and biological properties. Among these systems one can distinguish viral capsids. These solid shells formed by a certain number of copies of the same protein protect viruses from aggressions and facilitate infection of the host cell. Protein distributionin a capsid is quite regular and shows high degree of order, both orientational and positional. Viral capsids with spherical topology have icosahedral symmetry compatible with local crystalline orderbut incompatible with the global one and forbidden in periodic structures.Here, on the example of Papovaviruses we show the existence of a new type of organization whichresults in the chiral pentagonal quasicrystalline order of proteins in capsids with spherical topology and dodecahedral geometry. The formation of this order is described in the frame of the Landau theory of crystallization. The theory of elasticity of quasicrystals is used to show that the structure peculiarities result from the non-linear phason strain.Generalization of the proposed Landau theory of crystallization allows us to describe octagonal and decagonal quasicrystalline structures using constrained minimization of the free energy, thus giving a new physical sense to the « projection window » notion used in multi-dimensionalcrystallography.
|
18 |
Défauts de vorticité dans un supraconducteur en présence d’impuretés / Vorticity defects in a superconductor with impuritiesDos Santos, Mickaël 09 December 2010 (has links)
Cette thèse est consacrée à l'étude mathématique de quelques modèles suggérés par la théorie de la supraconductivité. Plus spécifiquement, nous étudions le modèle de Ginzburg-Landau simplifié (sans champ magnétique) en présence de condition de type Dirichlet ou du type degrés prescrits. Dans une première partie nous traitons le problème d'existence de minimiseurs locaux dans un domaine multiplement connexe du plan pour des conditions de type degrés prescrits. La deuxième partie traite l'effet d'un terme de chevillage dans l'énergie de Ginzburg-Landau (GL) bi-dimensionnelle en imposant une condition de type Dirichlet. Cette partie se décompose en trois chapitres. On commence par l'étude d'un terme de chevillage qui est étagé et qui prend une valeur différente de 1 uniquement en un nombre fixe de sous domaines (aussi appelés inclusions) dont la taille tend vers zéro. Dans le chapitre suivant, nous considérons le cas d'un terme de chevillage sans hypothèse de structure particulière dans le cas où la donnée au bord est de degré nul. Dans le dernier chapitre de la deuxième partie, nous traitons le cas d'un terme de chevillage étagé et uniformément distribué avec une condition de type Dirichlet de degré non nul. On montre que la vorticité est quantifiée et localisée dans les inclusions. La dernière partie s'intéresse à l'effet d'un terme de chevillage étagé dans un domaine tridimensionnel avec une condition de Dirichlet. Les résultats préliminaires que nous présentons permettent d'appréhender la manière dont les filaments de vorticité sont "tordus" par l'effet du terme de chevillage / This thesis is devoted to the mathematical study of some models suggested by the theory of the superconductivity. More specifically, we consider the simplified model of Ginzburg-Landau (without magnetic field) in presence of a Dirichlet or a degree condition. In the first part we treat the existence problem of local minimizers in a multiply connected domain of the plan with prescribed degrees conditions. In the second part, we discuss the effect of a pinning term in the two-dimensional Ginzburg-Landau functional. This part is divided in three chapters. We first consider the situation of a pinning term (depending on the Ginzburg-Landau parameter) which is a simple function and takes a value different to 1 only in a fixed number of subdomains (also called inclusions) whose size tends to zero. We prove that, considering a Dirichlet condition with a non zero degree, the vorticity is quantized and localized inside the inclusions. In the second chapter, we consider the situation of a pinning term without specific structure. We imposed a Dirichlet boundary condition with a null degree. In the last chapter of the second part, we deal with the case of a simple and uniformly distributed pinning term. We impose a Dirichlet boundary condition with a non zero degree. The last part deals with the effect of a simple pinning term (independent of the Ginzburg-Landau parameter) in the three-dimensional Ginzburg-Landau functional. The preliminary results we present allow to understand how the vorticity lines are bent under the effect of the pinning term
|
19 |
Configurations de vortex magnétiques dans des cylindres mésoscopiques supraconducteursStenuit, Geoffrey 09 July 2004 (has links)
Motivées par des données expérimentales sur la magnétisation de réseau de nanofils de plomb, les résolutions numériques des équations stationnaires de Ginzburg-Landau (GL) se sont focalisées sur les géométries à symétrie axiale. L'effet Meissner, les états représentant un vortex d'Abrikosov ou encore des Vortex Géants (``GiantVortex') centrés à l'origine du cylindre ont alors pu être identifiés sous l’hypothèse d’invariance sous rotation selon l’axe de symétrie du cylindre étudié (modèle à une dimension, 1D). En identifiant le type de transition par le caractère continu ou non du paramètre d'ordre autour du changement de phase, une frontière à l'échelle mésoscopique a également pu être identifiée au travers du modèle 1D. Plus spécifiquement, la limite entre les deux types de transitions décrite par le paramètre phénoménologique κ = λ /ξ ( =1/√2 à l’échelle macroscopique) devient une fonction non constante dépendant à la fois du rayon normalisé, u=R/λ, et de la vorticité L: κ =f(u,L). Les deux longueurs caractéristiques λ et ξ représentent respectivement les longueurs de pénétration et de cohérence d’un échantillon supraconducteur. Une comparaison avec les résultats obtenus par Zharkov permet de valider notre démarche numérique employée pour la résolution numérique des équations de GL à une dimension. En employant un modèle à deux dimensions (2D), la symétrie sous rotation des solutions a également été relâchée. Basée sur le principe de moindre action, la résolution propose alors un schéma numérique indépendant du type d'équations du mouvement à solutionner. Les configurations du type MultiVortex ont alors pu être identifiées, et comparées aux solutions du groupe du Professeur F. Peeters. Ces différents accords ont confirmé la démarche développée. Une modélisation de la magnétisation expérimentale d'un réseau de nanofils a également été développée. De par la taille réduite des nanofils, l'interaction magnétique entre ceux-ci a pu être négligée. La magnétisation totale du réseau est alors construite par une sommation incluant la contribution individuelle en magnétisation de chaque fil, pondérée par un poids reflétant une distribution gaussienne pour les rayons des fils constituant le réseau. La magnétisation individuelle est évidemment obtenue par résolution des équations du mouvement de GL précédemment étudiées avec les modèles 1D et 2D. En ajustant les paramètres libres associés à ce modèle décrivant la magnétisation totale du réseau, les données expérimentales ont pu être reproduites endéans 10% de marge d'erreur, l'intervalle d'incertitude caractéristique de la théorie effective de Ginzburg-Landau. Ces variables attachées au modèle de la magnétisation totale, reprennent la valeur moyenne m et l'écart-type s de la distribution gaussienne, ainsi que les longueurs caractéristiques λ(T) et ξ(T) présentes dans la théorie de GL. Un test totalement indépendant de l'analyse des magnétisations a permis de valider les valeurs déterminées pour la distribution des rayons. Les grandeurs ajustées pour les longueurs λ(T) et ξ(T) ont fait l'objet d'une analyse supplémentaire en termes de leur dépendance en température et du libre parcours moyen des électrons. Malgré l'accord entre les données expérimentales et la magnétisation théorique, il est important de mentionner qu'un paramètre libre supplémentaire, associé à l'apparition de configurations décrivant un vortex magnétique, a dû être introduit. Il modifie empiriquement la métastabilité trop longue en mode champ externe décroissant de l'état décrivant un vortex d'Abrikosov. La correction expulse donc le vortex avant sa prédiction théorique liée à la disparition de la barrière de Bean-Linvingston. Une étude plus approfondie de cette barrière de potentiel fut donc également réalisée. Cependant, elle n'est pas concluante en regard des données expérimentales analysées. Il n'en demeure pas moins que la transition apparaît dans un domaine en champ magnétique cohérent vis-à-vis de la description en énergie libre des états de vorticités voisines d'une unité de quantum de flux magnétique. La correspondance entre les longueurs caractéristiques du modèle phénoménologique de GL et les longueurs issues des théories microscopiques de Pippard et BCS a également abordée. Cette étude permet entre autre de comparer les différentes dépendances possibles en température avec les longueurs obtenues de l'analyse de magnétisation des nanofils en plomb. Au delà de l'accord avec le modèle des deux-fluides de Gorter et Casimir, une extrapolation bien en deçà de la température critique Tc est proposée pour les paramètres phénoménologiques λ(T) et ξ(T) de Ginzburg-Landau. Même si la correspondance entre les magnétisations expérimentales et théoriques semblait déjà l'indiquer, il est possible d'appliquer les équations de Ginzburg-Landau pour décrire le comportement magnétique du plomb bien en deçà de sa température critique. De plus, les paramètres associés possèdent une dépendance tout à fait conforme à une autre théorie empirique, le modèle des deux-fluides. Basée sur le modèle de Pippard, une détermination de la valeur du libre parcours moyen des normaux a également été isolée. Elle justifie alors une distinction entre les deux échantillons analysés en terme de leur degré d'impureté. Les résultats électrons obtenus étant en accord avec les procédures de fabrication des nanofils de plomb, cette nouvelle constatation, positive avec l'expérience, confirme une fois de plus la cohérence du modèle développé pour la magnétisation totale, et justifie l'emploi des équations de GL à toutes les températures en dessous de Tc. / Mesoscopic superconductors are described within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigate the properties, in particular the order of the transition and the vortex configurations, of cylinders submitted to an external magnetic field. Meissner state, Abrikosov vortices, GiantVortex and MultiVortex solutions are described. The Bean-Livingston barrier in mesoscopic cylinders is also numerically studied. This theoretical work was applied to understand experimental magnetizations of lead nanowires in an array well below the superconducting transition temperature Tc. By freely adjusting the GL phenomenological lengths λ (T) and ξ (T), the experimental magnetization curves are reproduced to within a 10% error margin. The Meissner and the Abrikosov state were also experimentally observed in this apparently type-I superconductor. This fact is a consequence of the non-trivial behaviour of the critical boundary κ _c ($=1/√2 in bulk materials) between type-I and type-II phase transition at mesoscopic scales. Beyond the experimental-theoretical agreement, the question whether the GL model remains valid far below Tc is also addressed. The temperature dependence of the adjusted characteristic lengths is compared with different theoretical and empirical laws. The best agreement is achieved for the Gorter-Casimir two-fluid model. A comparison between lead nanowire arrays electrodeposited under constant and pulsed voltage conditions allows us to distinguish both samples in terms of their electronic mean free paths. The characterisation of the latter quantities concurs perfectly with the experimental expectation given the different electrodeposition techniques.
|
20 |
Coexistência microscópica de antiferromagnetismo e supercondutividade não-convencional / Microscopic coexistence of antiferromagnetism and unconventional superconductivityAlmeida, Dalson Eloy, 1989- 20 February 2017 (has links)
Orientador: Eduardo Miranda / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-01T08:41:01Z (GMT). No. of bitstreams: 1
Almeida_DalsonEloy_D.pdf: 2470369 bytes, checksum: 93d3b945f62f374cfd686217575dda95 (MD5)
Previous issue date: 2017 / Resumo: Nesta tese estudamos a relação entre antiferromagnetismo e supercondutividade em pnictídeos à base de ferro. Este estudo será feito através da análise de uma energia livre de Ginzburg-Landau de parâmetros de ordem acoplados que será derivada de um modelo microscópico. Em particular, estamos interessados em saber se a transição entre os estados ordenados é de primeira ordem ou se as duas ordens podem coexistir. Para o caso de supercondutividade convencional as duas fases puras nunca coexistem. Entretanto, quando a supercondutividade é não-convencional e a condição de nesting perfeito não é satisfeita, pode haver um regime intermediário de coexistência microscópica das duas ordens. Nesta nova fase termodinâmica, as simetrias de rotação no espaço de spins, de reversão temporal e U(1) são quebradas simultânea e localmente. Logo, os canais de supercondutividade singleto e tripleto se misturam quanticamente. Em outras palavras, uma componente tripleto secundária do estado supercondutor é gerada. Os diagramas de fases do sistema são apresentados e analisamos também como flutuações magnéticas, acima da temperatura de Néel pura, afetam a temperatura de transição tripleto. Investigamos também o efeito da magnetização alternada no efeito Josephson, i.e., na supercorrente que flui através de uma junção entre dois supercondutores na fase de coexistência. Por fim, mas não menos importante, estudamos o efeito de proximidade em uma interface entre um supercondutor e um antiferromagneto. Veremos que os pares de Cooper podem penetrar a região magnética e em consequência, uma componente tripleto é induzida próximo da interface / Abstract: In this thesis, we study the interplay between antiferromagnetism and superconductivity in iron pnictides. This study will be done analyzing a free energy of coupled order parameters which will be derived from a microscopic model. In particular, we are interested if the phase transition between the ordered states is first order or if the two orders can coexist. For the case of conventional superconductivity, the two phases cannot coexist. However, when superconductivity is unconventional and the perfect nesting condition is not satisfied, there can exist an intermediary state of microscopic coexistence of the two orders. In this new thermodynamic phase, spin rotation, time reversal and U(1) symmetries are simultaneously and locally broken. Therefore, the singlet and triplet superconductivity channels are quantum mechanically mixed. In other words, a secondary triplet component is generated. The phase diagrams of the system are presented and we also analyze the effect of magnetic fluctuations above the pure Néel temperature on the triplet temperature transition. We also investigate the effects of the staggered magnetization on the Josephson effect, i.e., on the supercurrent that flows through a junction of two superconductors in the coexistence phase. Last, but not least, we study the proximity effect at an interface between a superconductor and an antiferromagnet. We will see that the Cooper pairs can penetrate the magnetic region and consequently a triplet component is induced near the interface / Doutorado / Física / Doutor em Ciências / 140834/2013-3 / 2342/15-4 / CNPQ / CAPES / BEX
|
Page generated in 0.0658 seconds