• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of LaBr3(Ce) Detectors for Picosecond Lifetime Measurements

Michetti-Wilson, Julian 10 May 2013 (has links)
There has been a great deal of interest in the use of LaBr3 (Ce) detectors for fast timing measurements. Due to their excellent energy resolution, ≈ 3% at 1MeV, they offer an improved signal to background over BaF2 which has ≈ 9% energy resolution. Many groups are planning arrays of LaBr3 detectors. The 8π collaboration has recently acquired a small array of 6 2”x 2” cylindrical LaBr3 detectors to replace its BaF2 detectors. We have been investigating the effects of detector-to-detector scattering on timing resolution. We have further investigated the use of Compton-suppression shields with LaBr3 detectors. This will also be the first testing of the DANTE acquisition system in the 8π. A summary of the results of our optimization, scattering studies, and Compton-suppression tests will be presented.
2

Fast-timing measurements with a spatially-distributed source

Mallaburn, Michael January 2017 (has links)
The effect of the spatial distribution of a radioactive source on timing measurements has been investigated with particular consideration toward the focal plane of recoil separators. The work conducted during this thesis is a precursor to understand the magnitude of such effects for the upcoming fast timing array (FATIMA) at FAIR. An experiment was undertaken at the University of Jyvaskyla using the K130 cyclotron to accelerate a 36-Ar beam to 190 MeV, directed onto a 106-Cd target, to produce recoils of 138-Gd and 136-Sm via fusion-evaporation reactions. Recoils directed using RITU to the focal-plane DSSSD of GREAT were distributed over the majority of the 124-mm by 40-mm extension of the DSSSD. A new array consisting of eight lanthanum bromide detectors was used to measure the time between coincident prompt-gamma rays emitted following the de-excitation of isomeric recoil states implanted into the DSSSD. Lifetimes were measured to be 213(20) ps and 200(100) ps for the first-excited 2+ states in 138-Gd and 136-Sm, respectively. Positional information, extracted from the DSSSD, was used to correct for the difference in the time-of-flight of gamma rays as they travelled from the implantation position to the lanthanum bromide detectors. When accounted for, the lifetimes were remeasured to be 217(20) ps and 210(90) ps, respectively, showing no significant change in value or error. A method of quantifying the increase in uncertainty of a lifetime measurement due to the spatial distribution of the source and the position of the surrounding detectors, supported by simulation, has been provided to explain these observations. A new technique for extracting the time-walk from each of the CFDs in a multi-detector array has been presented. The new technique offers a reduced complexity in calculations by accounting for the correlated time-walks present in time measurements from different detector-pairs sharing a common CFD. Work towards a technique for extracting lifetimes from time data has been presented. Dubbed the Symmetrised-Convolution Lifetime Measurement (SCLM) method, this technique essentially applies a model-dependent convolution of the prompt-response with nuclear exponential decay on both time spectra, obtained by inverting the start and stop conditions of a TAC, simultaneously and draws parallels to the Mirror Symmetric Centroid Difference method.
3

Development of a semi-autonomous directional and spectroscopic radiation detection mobile platform

Miller, Alexander Luke 01 March 2014 (has links)
This thesis presents a method for a small, inexpensive mobile robot equipped with a single high resolution scintillation detector to quickly survey an area and convey information about local sources of gamma radiation to a remote human operator. This is achieved by surrounding the detector with a lead sheath that blocks all gamma rays except those incident along the detector???s axial direction. A horizontal scan is performed by rotating the detector and a directional profile of gamma radiation is constructed. In addition a visual panorama of the local area is assembled using a camera mounted on the detector. A plot of the detector signal versus angle is then overlaid on top of the visual panorama and visible peaks clearly indicate the direction of local gamma radiation sources. Moreover, measuring the energy spectrum of gamma rays in each direction produces a 2D count frequency histogram where distinct peaks indicate the energy and direction of local gamma ray sources allowing the identification of different radio-isotopes.

Page generated in 0.0504 seconds