• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FMM och dess tillämpning i Randintegralmetoder

Halleryd, Max, Holmqvist, Johan January 2024 (has links)
Randintegralmetoder är numeriska beräkningsmetoder för att lösa partiella differential-ekvationer genom att integrera på randen av en domän. Dessa metoder ärbetydligt mer beräkningseffektiva än volymbaserade metoder såsom finita element-eller finita differansmetoder som diskretiserar hela domänen. När man använderrandintegralmetoder för att lösa harmoniska funktioner stöter man på evaluering avO(N^2) potentialer för ett system av N partiklar. Genom att använda algoritmen FastMultipole Method (FMM) kan antalet evalueringar reduceras. I den här rapportenkommer vi att använda oss av randintegralmetoder för att lösa tidsinvarianta Laplacesekvation, och med FMM reducera antalet potentialevalueringar till O(N log N ).
2

The History of the Dirichlet Problem for Laplace’s Equation

Alskog, Måns January 2023 (has links)
This thesis aims to provide an introduction to the field of potential theory at an undergraduate level, by studying an important mathematical problem in the field, namely the Dirichlet problem. By examining the historical development of different methods for solving the problem in increasingly general contexts, and the mathematical concepts which were established to support these methods, the aim is to provide an overview of various basic techniques in the field of potential theory, as well as a summary of the fundamental results concerning the Dirichlet problem in Euclidean space. / Målet med detta arbete är att vara en introduktion på kandidatnivå till ämnesfältet potentialteori, genom att studera ett viktigt matematiskt problem inom potentialteori, Dirichletproblemet. Genom att undersöka den historiska utvecklingen av olika lösningsmetoder för problemet i mer och mer allmänna sammanhang, i kombination med de matematiska koncepten som utvecklades för att användas i dessa lösningsmetoder, ges en översikt av olika grundläggande tekniker inom potentialteori, samt en sammanfattaning av de olika matematiska resultaten som har att göra med Dirichletproblemet i det Euklidiska rummet.

Page generated in 0.1068 seconds