Spelling suggestions: "subject:"laplacian conergy"" "subject:"laplacian coenergy""
1 |
Energia laplaciana sem sinal de grafosPinheiro, Lucélia Kowalski January 2018 (has links)
Neste trabalho, estudamos o problema de encontrar grafos extremais com rela c~ao a energia laplaciana sem sinal. Mais especi camente, procuramos grafos com a maior energia laplaciana sem sinal em determinadas classes. Nesse sentido, conjecturamos que o grafo unic clico conexo com a maior energia laplaciana sem sinal e o grafo formado por um tri^angulo com v ertices pendentes distribu dos balanceadamente e provamos parcialmente essa conjectura. Tal resultado foi provado tamb em para a energia laplaciana. Al em disso, conjecturamos que o grafo com a maior energia laplaciana sem sinal dentre todos os grafos com n v ertices e o grafo split completo com uma clique de [n+1/ 3] v ertices e provamos tal conjectura para algumas classes de grafos, em particular, para arvores, grafos unic clicos e bic clicos. / In this work, we study the problem of nding extremal graphs with relation to the signless Laplacian energy. More speci cally, we look for graphs with the largest signless Laplacian energy inside certains classes. In this sense, we conjecture that the connected unicyclic graph with the largest signless Laplacian energy is the graph consisting of a triangle with balanced distributed pendent vertices and we partially prove this conjecture. This result was also proved for the Laplacian energy. Moreover we conjecture that the graph with the largest signless Laplacian energy among all graphs with n vertices is the complete split graph with a clique of [n+1/ 3] vertices and we prove this conjecture for some classes of graphs, in particular, for trees, for unicyclic and bicyclic graphs.
|
2 |
Energia laplaciana sem sinal de grafosPinheiro, Lucélia Kowalski January 2018 (has links)
Neste trabalho, estudamos o problema de encontrar grafos extremais com rela c~ao a energia laplaciana sem sinal. Mais especi camente, procuramos grafos com a maior energia laplaciana sem sinal em determinadas classes. Nesse sentido, conjecturamos que o grafo unic clico conexo com a maior energia laplaciana sem sinal e o grafo formado por um tri^angulo com v ertices pendentes distribu dos balanceadamente e provamos parcialmente essa conjectura. Tal resultado foi provado tamb em para a energia laplaciana. Al em disso, conjecturamos que o grafo com a maior energia laplaciana sem sinal dentre todos os grafos com n v ertices e o grafo split completo com uma clique de [n+1/ 3] v ertices e provamos tal conjectura para algumas classes de grafos, em particular, para arvores, grafos unic clicos e bic clicos. / In this work, we study the problem of nding extremal graphs with relation to the signless Laplacian energy. More speci cally, we look for graphs with the largest signless Laplacian energy inside certains classes. In this sense, we conjecture that the connected unicyclic graph with the largest signless Laplacian energy is the graph consisting of a triangle with balanced distributed pendent vertices and we partially prove this conjecture. This result was also proved for the Laplacian energy. Moreover we conjecture that the graph with the largest signless Laplacian energy among all graphs with n vertices is the complete split graph with a clique of [n+1/ 3] vertices and we prove this conjecture for some classes of graphs, in particular, for trees, for unicyclic and bicyclic graphs.
|
3 |
Energia laplaciana sem sinal de grafosPinheiro, Lucélia Kowalski January 2018 (has links)
Neste trabalho, estudamos o problema de encontrar grafos extremais com rela c~ao a energia laplaciana sem sinal. Mais especi camente, procuramos grafos com a maior energia laplaciana sem sinal em determinadas classes. Nesse sentido, conjecturamos que o grafo unic clico conexo com a maior energia laplaciana sem sinal e o grafo formado por um tri^angulo com v ertices pendentes distribu dos balanceadamente e provamos parcialmente essa conjectura. Tal resultado foi provado tamb em para a energia laplaciana. Al em disso, conjecturamos que o grafo com a maior energia laplaciana sem sinal dentre todos os grafos com n v ertices e o grafo split completo com uma clique de [n+1/ 3] v ertices e provamos tal conjectura para algumas classes de grafos, em particular, para arvores, grafos unic clicos e bic clicos. / In this work, we study the problem of nding extremal graphs with relation to the signless Laplacian energy. More speci cally, we look for graphs with the largest signless Laplacian energy inside certains classes. In this sense, we conjecture that the connected unicyclic graph with the largest signless Laplacian energy is the graph consisting of a triangle with balanced distributed pendent vertices and we partially prove this conjecture. This result was also proved for the Laplacian energy. Moreover we conjecture that the graph with the largest signless Laplacian energy among all graphs with n vertices is the complete split graph with a clique of [n+1/ 3] vertices and we prove this conjecture for some classes of graphs, in particular, for trees, for unicyclic and bicyclic graphs.
|
4 |
Spectral threshold dominance, Brouwer's conjecture and maximality of Laplacian energyHelmberg, Christoph, Trevisan, Vilmar 11 June 2015 (has links) (PDF)
The Laplacian energy of a graph is the sum of the distances of the eigenvalues of the Laplacian matrix of the graph to the graph's average degree. The maximum Laplacian energy over all graphs on n nodes and m edges is conjectured to be attained for threshold graphs. We prove the conjecture to hold for graphs with the property that for each k there is a threshold graph on the same number of nodes and edges whose sum of the k largest Laplacian eigenvalues exceeds that of the k largest Laplacian eigenvalues of the graph. We call such graphs spectrally threshold dominated. These graphs include split graphs and cographs and spectral threshold dominance is preserved by disjoint unions and taking complements. We conjecture that all graphs are spectrally threshold dominated. This conjecture turns out to be equivalent to Brouwer's conjecture concerning a bound on the sum of the k largest Laplacian eigenvalues.
|
5 |
Spectral threshold dominance, Brouwer's conjecture and maximality of Laplacian energyHelmberg, Christoph, Trevisan, Vilmar 11 June 2015 (has links)
The Laplacian energy of a graph is the sum of the distances of the eigenvalues of the Laplacian matrix of the graph to the graph's average degree. The maximum Laplacian energy over all graphs on n nodes and m edges is conjectured to be attained for threshold graphs. We prove the conjecture to hold for graphs with the property that for each k there is a threshold graph on the same number of nodes and edges whose sum of the k largest Laplacian eigenvalues exceeds that of the k largest Laplacian eigenvalues of the graph. We call such graphs spectrally threshold dominated. These graphs include split graphs and cographs and spectral threshold dominance is preserved by disjoint unions and taking complements. We conjecture that all graphs are spectrally threshold dominated. This conjecture turns out to be equivalent to Brouwer's conjecture concerning a bound on the sum of the k largest Laplacian eigenvalues.
|
Page generated in 0.0414 seconds