• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 82
  • 42
  • 14
  • 10
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 391
  • 391
  • 391
  • 120
  • 104
  • 87
  • 83
  • 80
  • 79
  • 77
  • 71
  • 64
  • 63
  • 54
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Développement de modèles physiques et numériques pour la simulation aux grandes échelles des écoulements dans les tuyères supersoniques / Development of physical and numerical models for large eddy simulation of supersonic nozzles

Georges-Picot, Alexandre 08 December 2014 (has links)
Ces travaux, initiés par le CNES (Centre National d’Etudes Spatiales) dans le cadre du programme de recherche ATAC (Aérodynamique Tuyères et Arrières-Corps), sont principalement consacrés au développement et à la validation de modèles numériques et physiques, pour la prédiction des charges latérales dans les moteurs-fusées. En effet, les systèmes propulsifs mettent en jeu des phénomènes physiques très complexes : mélange turbulent, compressibilité forte (interaction choc/turbulence, couplage de modes vorticité/entropie/acoustique), structures cohérentes et organisations tourbillonnaires dans le cas tridimensionnel, décollements massifs et instabilités à grande échelle. L’analyse de ces phénomènes nécessite le recourt à des modélisations de plus en plus fines basées sur des simulations numériques avancées. Pour faire face au coût prohibitif des simulations directes (ou simulations LES résolues) des couches limites, un nouveau modèle de paroi a été développé, en se basant sur les propriétés d’auto similarité des couches limites compressibles en tuyères supersoniques, et en utilisant des lois de renormalisation dérivées à partir d’une base de données tabulée. Ce modèle permet de prendre en compte la dynamique de l’écoulement tout en réduisant considérablement le nombre de points de calcul et le pas de temps requis pour les simulations LES. Les résultats de calcul mettent en évidence de nombreuses interactions complexes au sein de l’écoulement. En particulier, les interactions amont/aval (supersonique/subsonique),influençant fortement le décollement et la structure de chocs, à l’origine de l’apparition de pics énergétiques associés à des perturbations acoustiques conduisent à l’apparition,par rétroaction, de phénomènes d’instabilités convectives, couplées à des modes globaux dissymétriques en dynamique absolue. Ces phénomènes auto-entretenus sont synonymes d’efforts latéraux et sont représentatifs des expériences menées en laboratoire et sur bancs d’essai moteurs-fusées. En terme d’optimisation des calculs massivement parallèles, une méthode originale, appelée « Drop-Procs », a été développée dans le cadre des frontières immergées. Cette méthode, adaptée aux architectures de calculs intensifs Tier-0, permet une réduction notable du temps CPU (Central Processing Unit), allant jusqu’à 50%, et rendant ainsi ce type de simulations plus accessible à l’échelle industrielle. / This work, initiated by the CNES (Centre National d’Etudes Spatiales) in the ATAC research program (Aérodynamique Tuyères et Arrières-Corps), is devoted to the development and the validation of numerical and physical models for the prediction of side-loads in rocket engines. Indeed, propulsion systems involve complex physical phenomena : turbulent mixing, high compressibility (interaction shock / turbulence, coupling modes vorticity / entropy / acoustic), coherent structure, three-dimensional vortex organizations, massive detachment and large scale instabilities. The analysis of these phenomena requires the uses of advanced numerical simulations. To deal with the high cost of large-eddy simulations boundary layers, a new wall model, based on renormalization laws and a database, was developed. This model allows to take into account the dynamics of the flow while significantly reducing the number of calculation points and the time step required for LES simulations. Results show many complex interactions with in the flow. In particular, the upstream / downstream interactions (supersonic / subsonic), strongly influence the separation and the shock structure, causing the occurrence of energy peaks associated with acoustic disturbances and leading to the appearance of convective instability, coupled with global asymmetric modes. These self-sustained phenomena are synonymous of side-loads and are representative of laboratory experiments and rocket engine test benches. In terms of optimization of massively parallel computing, a new method, called "Drop-Procs", was developed as part of the immersed boundaries. This method is suitable for compute-intensive architectures Tier-0 and allows a significant reduction in CPU time (Central Processing Unit) consumption, up to 50%, making this type of simulation accessible for industrials.
112

Simulation haute-fidélité de la combustion pour les moteurs-fusées / High-fidelity simulation of combustion for rocket engines

Guven, Umut 17 December 2018 (has links)
L’allumage est un point essentiel dans le dimensionnement des moteurs-fusées, et il nécessite de prendre en compte plusieurs phénomènes physiques très distincts qui sont autant de challenges numériques. Le premier point abordé pendant cette thèse est la modélisation et la simulation par Simulation aux Grandes Échelles d’un allumeur de type VINCI. Des gaz chauds, riches en oxygène, sont délivrés de façon supersonique dans une chambre remplie d’hydrogène faisant apparaître un jet fortement sous-détendu et de multiples interactions choc/choc ou choc/flamme. Les premiers instants du processus d’allumage sont ici détaillés. Le second point abordé est la modélisation et la simulation numérique de la combustion H2/O2 à haute pression. En particulier, les effets d’une diffusion non-idéale sont étudiés dans le cas de flammes de prémélange 1D et sur la configuration 2D de type ‘splitter plate’. Un impact de la modélisation sur les espèces produites et le champ de température est ici mis en lumière. / Ignition is a key point in the design of liquid rocket engine (LRE), and it requires to take into account several distinct physical phenomena that constitute numerical challenges. The first point addressed during this thesis is the modeling and simulation using Large Eddy Simulation of a LRE igniter in a configuration close to VINCI rocket engine. The hot gases from the igniter, rich in oxygen, are delivered at supersonic speeds in a chamber filled with hydrogen. Such configuration creates under-expanded jets with multiple shock/shock or shock/flame interactions. A focus is done on the ignition process. The second point addressed is the modeling and simulation of high pressure H2/O2 combustion which occurs. In particular, the effects of non-ideal diffusion are studied through a 1D premixed flames and a 2D splitter plate configuration. An impact of modeling on the species produced and the temperature field is highlighted.
113

Spatiospectral Features in Supersonic, Highly Heated Jet Noise

Leete, Kevin Matthew 25 May 2021 (has links)
The sound produced by military aircraft is dominated by noise generated by the turbulent mixing of the jetted exhaust with the ambient air. This jet noise has the potential to annoy the community and pose a hearing loss risk for military personnel. The goal of this dissertation is to characterize spatiospectral features in the field produced by full-scale military aircraft that are not traditionally seen at the laboratory scale and identify potential noise mechanisms for these features. Measurements of two military aircraft jet noise fields are found to be best described as a superposition of spatiospectral lobes, whose relative amplitudes dictate the overall directivity at each engine power. Near-field acoustical holography techniques are applied to one of the military aircraft measurements to characterize the behavior of the lobes as a function of engine power. The simulated jet noise of a highly heated laboratory-scale jet is then analyzed to compare with the military aircraft measurement and is found to only partially contain the spatiospectral lobe phenomenon. Application of near to far field coherence tracing and near-field acoustical holography to the simulations provides validation of the methods used on the military aircraft and illuminate potential source mechanisms that may explain the presence of the spatiospectral lobes.
114

Analyse et amélioration d'une chambre de combustion centimétrique par simulations aux grandes échelles / Analysis and improvement of a centimetric burner by large-eddy simulations

Bénard, Pierre 08 October 2015 (has links)
Réaliser un système de combustion à petite échelle reste aujourd’hui un défi. L’augmentation du rapport surface/volume favorise les pertes thermiques, contribue à la diminution du temps de séjour et limite la turbulence. Le premier objectif de cette thèse est de comprendre les phénomènes physiques intervenant dans un brûleur centimétrique tourbillonnaire de 8 x10 x 8 mm3 (millimètre cube) et mettre au point des outils numériques adaptés. L’écoulement réactif méthane/air est étudié au moyen de simulations numériques LES. La combustion ne consomme pas l’intégralité du carburant, entraînant un rendement de combustion de l’ordre de 50% et d’importantes émissions de polluants. Le deuxième objectif est d’adapter les performances de ce brûleur. L’enrichissement en hydrogène a montré une amélioration sensible du rendement et une réduction des émissions polluantes. Plusieurs configurations géométriques de la chambre ont aussi été étudiées, ce qui a permis de dégager des axes d’améliorations. / Designing a meso-scale combustion system remains a challenging scientific and technological issue. Increasing the surface-to-volume ratio promotes wall heat losses, reduces the residence time and turbulence intensity. The main objective of this thesis is to understand the physical phenomena involved in the centimetre-sized asymmetric whirl cubic burner of 8 x 10 x 8 mm3 (millimètre cube) and develop specific adapted numerical tools. The methane/air reactive flow is studied using detailed LES. While fuel and air are injected separately, combustion takes place in the premixed regime. However combustion is far from being complete, causing low combustion efficiency and significant emissions of pollutants. The second objective is to adapt in the best possible way the performances of this burner. Hydrogen enrichment of the fuel mixture showed significant efficiency enhancement and reduced pollutant emissions. Several other combustor geometries are also studied, paving the way for future improvement.
115

Turbulence Modeling of Strongly Heated Internal Pipe Flow Using Large Eddy Simulation

Hradisky, Michal 01 May 2011 (has links)
The main objective of this study was to evaluate the performance of three Large Eddy Simulation (LES) subgrid scale (SGS) models on a strongly heated, low Mach number upward gas flow in a vertical pipe with forced convection. The models chosen for this study were the Smagorinsky-Lilly Dynamic model (SLD), the Kinetic Energy Transport model (KET), and the Wall-Adaptive Local-Eddy viscosity model (WALE). The used heating rate was sufficiently large to cause properties to vary significantly in both the radial and streamwise directions. All simulations were carried out using the commercial software FLUENT. The effect of inlet turbulence generation techniques was considered as well. Three inlet turbulence generation techniques were compared, namely, the Spectral Synthesizer Method (SSM), the Vortex Method (VM), and the Generator (GEN) technique. A user-defined function (UDF) was written to implement the GEN technique into the solver; the SSM and VM techniques were already build-in. All simulation and solver settings were validated by performing computational simulations of isothermal fully developed pipe flow and results were compared to available experimental and Direct Numerical Simulation (DNS) data. For isothermal boundary conditions, among the three inlet turbulence generation techniques, the GEN technique produced results which best matched the experimental and DNS results. All three LES SGS models performed equally well when coupled with the GEN technique for the study of isothermal pipe flow. However, all models incorrectly predicted the behavior of radial and circumferential velocity fluctuations near the wall and the GEN technique proved to be the most computationally expensive. For simulations with longer computational domain, the effect of the inlet turbulence generation technique diminishes. However, results suggest that both the SLD and KET models need shorter computational domains to recover proper LES behavior when coupled with the VM technique in comparison to the WALE SGS model with the same turbulence inlet generation technique. For high heat flux simulations all SGS models were coupled with the VM technique to decrease the computational effort to obtain statistically steady-state solution. For comparative purposes, one simulation was carried out using the WALE and GEN techniques. All simulations equally significantly underpredicted the streamwise temperature distribution along the pipe wall as well as in the radial directions at various streamwise locations. These effects are attributed to the overpredicted streamwise velocity components and incorrect behavior of both the radial and circumferential velocity components in the near wall region for all subgrid scale models.
116

Numerical Study on Droplet Evaporation and Combustion Instability / 数値解析による液滴蒸発および燃焼振動に関する研究

Kitano, Tomoaki 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19685号 / 工博第4140号 / 新制||工||1639(附属図書館) / 32721 / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 小森 悟, 教授 中部 主敬, 教授 稲室 隆二 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
117

Large Eddy Simulation of Nanosecond Repetitively Pulsed Plasma Discharge Effects on Swirl-Stabilized Turbulent Combustion

Joshua A Strafaccia (11192097) 28 July 2021 (has links)
An atmospheric pressure swirl-stabilized methane-air burner has been developed as a test platform for nanosecond repetitively pulsed (NRP) discharge plasma-assisted combustion research. Qualitative flame and plasma discharge characterizations were conducted with high-speed video and low-light ICCD imagery, along with a modal acoustic analysis of the entire assembly. A large eddy simulation (LES) of the burner was created using the commercial solver Ansys Fluent to investigate the plasma effects on swirl-stabilized turbulent combustion. A modified version of the solver's premixed combustion mechanism is presented along with a phenomenological plasma discharge model to simulate plasma-assisted combustion. Cold flow particle image velocimetry (PIV) data were collected to validate the non-reacting flow field and assess non-reacting NRP discharge effects. Optical emission spectroscopy (OES) measurements of the second positive system (SPS) of nitrogen mapped temperature characteristics of NRP discharge bursts for comparison to time-resolved simulation data. Finally, time-averaged CH* chemiluminescence data were collected to qualitatively assess the effects of plasma on the experimental burner and simulated flame structure. Overall, the phenomenologically-based combustion mechanism proposed in this work shows good agreement with several experimental observations and provides a promising framework for future plasma-assisted combustion modeling.
118

Effect of Vortex Shedding on Aerosolization of a Particle from a Hill using Large-Eddy Simulation

Sharma, Amit 29 September 2021 (has links)
No description available.
119

Performance of Algebraic Multigrid for Parallelized Finite Element DNS/LES Solvers

Larson, Gregory James 22 September 2006 (has links) (PDF)
The implementation of a hybrid spectral/finite-element discretization on the unsteady, incompressible, Navier-Stokes equations with a semi-implicit time-stepping method, an explicit treatment of the advective terms, and an implicit treatment of the pressure and viscous terms leads to an algorithm capable of calculating 3D flows over complex 2D geometries. This also results in multiple Fourier mode linear systems which must be solved at every timestep, which naturally leads to two parallelization approaches: Fourier space partitioning, where each processor individually and simultaneously solves a linear system, and physical space partitioning, where all processors collectively solve each linear system, sequentially advancing through Fourier modes. These two parallelization approaches are compared based upon computational cost using multiple solvers: direct sparse LU, smoothed aggregation AMG, and single-level ILUT preconditioned GMRES; and on two supercomputers of different memory architecture(distributed and shared memory). This study revealed Fourier space partitioning outperforms physical space partitioning in all problems analyzed, and scales more efficiently as well. These differences were more dramatic on the distributed memory platform than the shared memory platform. Another study compares the previously mentioned solvers along with one additional solver, pointwise AMG, in Fourier space partitioning without parallelization to better understand computational scaling for problems with large meshes. It was found that the direct sparse LU solver performed well in terms of computational time, scaled linearly, but had very high memory usage which scaled in a super-linear manner. The single-level ILUT preconditioned GMRES solver required the least amount of memory, which also scaled linearly, but only had acceptable performance in terms of computational time for coarse meshes. Both AMG methods scaled linearly in both memory usage and time, and were comparable to the direct sparse LU solver in terms of computational time. The results of these studies are particularly useful for implementation of this algorithm on challenging and complex flows, especially direct numerical and large-eddy simulations. Reducing computational cost allows the analysis and understanding of more flows of practical interest.
120

Subgrid-scale modelling for large-eddy simulation including scalar mixing in rotating turbulent shear flows

Marstorp, Linus January 2006 (has links)
The aim of the present study is to develop subgrid-scale models that are relevant for complex flows and combustion. A stochastic model based on a stochastic Smagorinsky constant with adjustable variance and time scale is proposed. The stochastic model is shown to provide for backscatter of both kinetic energy and scalar variance without causing numerical instabilities. A new subgrid-scale scalar flux model is developed using the same kind of methodology that leads to the explicit algebraic scalar flux model, EASFM, for RANS. The new model predicts the anisotropy of the subgrid-scales in a more realistic way than the eddy diffusion model. Both new models were tested in rotating homogeneous shear flow with a passive scalar. Rogallo’s method of moving the frame with the mean flow to enable periodic boundary conditions was used to simulate homogeneous shear flow. / QC 20101119

Page generated in 0.3184 seconds