• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 9
  • 7
  • 2
  • 1
  • Tagged with
  • 60
  • 60
  • 60
  • 15
  • 15
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Surface Breakup of A Liquid Jet Injected Into A Gaseous Crossflow

Behzad Jazi, Mohsen 16 July 2014 (has links)
The normal injection of a liquid jet into a gaseous crossflow has many engineering applications. In this thesis, detailed numerical simulations based on the level set method are employed to understand the physical mechanism underlying the jet ``surface breakup''. The numerical observations reveal the existence of hydrodynamic instabilities on the jet periphery. The temporal growth of such azimuthal instabilities leads to the formation of interface corrugations, which are eventually sheared off of the jet surface as sheet-like structures. The sheets finally undergo disintegration into ligaments and drops during the surface breakup process. Temporal linear stability analyses are employed to understand the nature of these instabilities. To facilitate the analysis, analytical solutions for the flow fields of the jet and the crossflow are derived. We identify the ``shear instability'' as the primary destabilization mechanism in the flow. This inherently inviscid mechanism opposes the previously suggested mechanism of surface breakup (known as ``boundary layer stripping''), which is based on a viscous interpretation. The influence of the jet-to-crossflow density ratio on the flow stability are also studied. The findings show that a higher density jet leads to higher wavenumber instabilities on the jet surface and thereby subsequent smaller drops and ligaments. The stability characteristics of the most amplified modes (i.e., the wavenumber and corresponding growth rate) obtained from stability analyses and numerical simulations are in good agreement. The stability results of the jet also show that the density may have a non-monotonic stabilizing/destabilizing effect on the flow stability. To investigate such effect, the concept of wave resonance are employed to physically interpret the inviscid instability mechanism in two-phase flows with sharp interfaces and linear velocity profiles. We demonstrate that neutrally stable waves are formed due to the density jump in the flow, in addition to the well-known vorticity (Rayleigh) waves. Under certain conditions, such neutral waves are capable of resonating and generating unstable modes. The resonance of different pairs of neutral waves, therefore, results in either stabilizing or destabilizing effect of density variation. We predict similar reasoning behind the density behavior in the jet in crossflow configuration with smoothly varying velocity and density profiles.
12

Large Eddy Simulations of a Reverse Flow Combustion System

January 2012 (has links)
abstract: Next generation gas turbines will be required to produce low concentrations of pollutants such as oxides of nitrogen (NOx), carbon monoxide (CO), and soot. In order to design gas turbines which produce lower emissions it is essential to have computational tools to help designers. Over the past few decades, computational fluid dynamics (CFD) has played a key role in the design of turbomachinary and will be heavily relied upon for the design of future components. In order to design components with the least amount of experimental rig testing, the ensemble of submodels used in simulations must be known to accurately predict the component's performance. The present work aims to validate a CFD model used for a reverse flow, rich-burn, quick quench, lean-burn combustor being developed at Honeywell. Initially, simulations are performed to establish a baseline which will help to assess impact to combustor performance made by changing CFD models. Rig test data from Honeywell is compared to these baseline simulation results. Reynolds averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) turbulence models are both used with the presumption that the LES turbulence model will better predict combustor performance. One specific model, the fuel spray model, is evaluated next. Experimental data of the fuel spray in an isolated environment is used to evaluate models for the fuel spray and a new, simpler approach for inputting the spray boundary conditions (BC) in the combustor is developed. The combustor is simulated once more to evaluate changes from the new fuel spray boundary conditions. This CFD model is then used in a predictive simulation of eight other combustor configurations. All computer simulations in this work were preformed with the commercial CFD software ANSYS FLUENT. NOx pollutant emissions are predicted reasonably well across the range of configurations tested using the RANS turbulence model. However, in LES, significant under predictions are seen. Causes of the under prediction in NOx concentrations are investigated. Temperature metrics at the exit of the combustor, however, are seen to be better predicted with LES. / Dissertation/Thesis / M.S. Mechanical Engineering 2012
13

Etude théorique et numérique de la combustion isochore appliquée au cas du thermoreacteur / Theoretical and numerical study of the isochore combustion applied to the case of the "Thermoreacteur"

Labarrere, Laure 21 March 2016 (has links)
Un des principaux enjeux de l'industrie aéronautique est la recherche du moteur au meilleur rendement possible, pour satisfaire des contraintes économiques, techniques et environnementales. Les turbomachines bénéficient d'un constant perfectionnement depuis plus de 60 ans, et cette technologie semble avoir atteint un plateau. Une rupture technologique est aujourd'hui nécessaire, comme la combustion à volume constant (CVC). Le gain attendu est suffisant pour tenter de remplacer les systèmes actuels où la combustion se fait à pression constante. La combustion à isovolume fait appel à des mécanismes encore rarement maitrisés dans le contexte aéronautique. Sa compréhension passe par des expérimentations et des modèles théoriques et numériques. L’objectif de cette thèse est de développer une théorie et un outil de simulation LES (Large Eddy Simulation) appliqué au cas du concept ‘thermoréacteur’. Ainsi, la première étape a consisté à mettre en place un outil de simulation 0D traduisant l’évolution d’un cycle moteur de type CVC (Combustion à Volume Constant). Certains modèles utilisés dans cet outil 0D sont basés sur des corrélations expérimentales. D'autres présentent des paramètres à déterminer à partir de simulations numériques. La simulation 3D d’un système de type CVC est envisageable aujourd’hui grâce aux progrès récents des méthodes LES. Ainsi, des simulations du thermoréacteur ont pu être réalisées, et confrontées aux résultats expérimentaux obtenus au laboratoire Pprime sur trois points de fonctionnement. Les variabilités cycle à cycle observées expérimentalement ont été analysées dans les calculs LES. Les vitesses importantes au niveau de l'allumage et le taux de résidus du cycle précédent semblent être les principaux facteurs à l'origine de ces variations cycle à cycle. / A major challenge for the aircraft industry is to improve engine efficiency and to reduce pollutant emissions for economic, technical and environmental reasons. Aeronautical gas turbines have enjoyed a constant improvement for more than 60 years. This technology seems to have reached such efficiency levels that a technological breakthrough is necessary. Constant Volume Combustion (CVC) offers significant gain in consumption and could replace classical constant pressure combustion technologies, currently used in aeronautical engines. Mechanisms involved in isovolume combustion are not accurately controlled in the context of aeronautical chambers. Experimental, theoretical and numerical studies should provide a better understanding of CVC devices. The objective of this thesis is to develop simulation tools to study the thermoreacteur concept. First, a zero-dimensional (0D) simulation tool is developed to describe the evolution of a CVC cycle. Models based on experimental correlations are used to build the 0D tool. Parameters have to be determined from numerical simulations. Today, the 3D simulation of a CVC system is possible thanks to the recent progress of the LES (Large Eddy Simulation) methods developed at CERFACS. Simulations of the thermoreacteur concept have been carried out, and compared to experimental results obtained at the Pprime laboratory. Three operating points have been calculated. The main conclusion is the existence of significant cyclic variations which are observed in the experiment and analyzed in the LES: the local flow velocity at spark timing and the level of residuals gases are the major factors leading to cyclic variations.
14

Numerical Analysis of Pulsed Jets in Supersonic Crossflow using a High Frequency Actuator

Castelino, Neil January 2021 (has links)
No description available.
15

Turbulence Mechanisms in a Supersonic Rectangular Multistream Jet with an Aft-Deck

Stack, Cory M. 17 October 2019 (has links)
No description available.
16

THE EFFECTS OF CANOPY DENSITY AND SPACING IN MODULATING POLLUTION DEPOSITION RATE

Yazbeck, Theresia January 2019 (has links)
No description available.
17

Combustion Instability Mechanism of a Reacting Jet in Cross Flow at Gas Turbine Operating Conditions

Pent, Jared 01 January 2014 (has links)
Modern gas turbine designs often include lean premixed combustion for its emissions benefits; however, this type of combustion process is susceptible to self-excited combustion instabilities that can lead to damaging heat loads and system vibrations. This study focuses on identifying a mechanism of combustion instability of a reacting jet in cross flow, a flow feature that is widely used in the design of gas turbine combustion systems. Experimental results from a related study are used to validate and complement three numerical tools that are applied in this study – self-excited Large Eddy Simulations, 3D thermoacoustic modeling, and 1D instability modeling. Based on the experimental and numerical results, a mechanism was identified that included a contribution from the jet in cross flow impedance as well as an overall jet flame time lag. The jet impedance is simply a function of the acoustic properties of the geometry while the flame time lag can be separated into jet velocity, equivalence ratio, and strain fluctuations, depending on the operating conditions and setup. For the specific application investigated in this study, it was found that the jet velocity and equivalence ratio fluctuations are important, however, the effect of the strain fluctuations on the heat release are minimal due to the high operating pressure. A mathematical heat release model was derived based on the proposed mechanism and implemented into a 3D thermoacoustic tool as well as a 1D instability tool. A three-point stability trend observed in the experimental data was correctly captured by the 3D thermoacoustic tool using the derived heat release model. Stability maps were generated with the 1D instability tool to demonstrate regions of stable operation that can be achieved as a function of the proposed mechanism parameters. The relative effect of the reacting jet in cross flow on the two dominant unstable modes was correctly captured in the stability maps. While additional mechanisms for a reacting jet in cross flow are possible at differing flow conditions, the mechanism proposed in this study was shown to correctly replicate the stability trends observed in the experimental tests and provides a fundamental understanding that can be applied for combustion system design.
18

Numerical Simulations of Magnetohydrodynamic Flow and Heat Transfer

KC, Amar January 2014 (has links)
No description available.
19

Nearfield and Farfield Acoustic Models for Rectangular Jets

Chakrabarti, Suryapratim 08 September 2022 (has links)
No description available.
20

Large Eddy Simulations of Complex Flows in IC-Engine's Exhaust Manifold and Turbine

Fjällman, Johan January 2014 (has links)
The thesis deals with the flow in pipe bends and radial turbines geometries that are commonly found in an Internal Combustion Engine (ICE). The development phase of internal combustion engines relies more and more on simulations as an important complement to experiments. This is partly because of the reduction in development cost and the shortening of the development time. This is one of the reasons for the need of more accurate and predictive simulations. By using more complex computational methods the accuracy and predictive capabilities are increased. The disadvantage of using more sophisticated tools is that the computational time is increasing, making such tools less attractive for standard design purposes. Hence, one of the goals of the work has been to contribute to assess and improve the predictive capability of the simpler methods used by the industry. By comparing results from experiments, Reynolds Averaged Navier-Stokes (RANS) computations, and Large Eddy Simulations (LES) the accuracy of the different computational methods can be established. The advantages of using LES over RANS for the flows under consideration stems from the unsteadiness of the flow in the engine manifold. When such unsteadiness overlaps the natural turbulence the model lacks a rational foundation. The thesis considers the effect of the cyclic flow on the chosen numerical models. The LES calculations have proven to be able to predict the mean field and the fluctuations very well when compared to the experimental data. Also the effects of pulsatile exhaust flow on the performance of the turbine of a turbocharging system is assessed. Both steady and pulsating inlet conditions are considered for the turbine case, where the latter is a more realistic representation of the real flow situation inside the exhaust manifold and turbine. The results have been analysed using different methods: single point Fast Fourier Transforms (FFT), probe line means and statistics, area and volume based Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). / Denna avhandling behandlar flödet i rörkrökar och radiella turbiner som vanligtvis återfinns i en förbränningsmotor. Utvecklingsfasen av förbränningsmotorer bygger mer och mer på att simuleringar är ett viktigt komplement till experiment. Detta beror delvis på minskade utvecklingskostnader men även på kortare utevklningstider. Detta är en av anledningarna till att man behöver mer exakta och prediktiva simuleringsmetoder. Genom att använda mer komplexa beräkningsmetoder så kan både nogrannheten och prediktiviteten öka. Nackdelen med att använda mer sofistikerade metoder är att beräkningstiden ökar, vilket medför att sådana verktyg är mindre attraktiva för standardiserade design ändamål. Härav, ett av målen med projektet har varit att bidra med att bedöma och förbättra de enklare metodernas prediktionsförmåga som används utav industrin. Genom att jämföra resultat från experiment, Reynolds Averaged Navier-Stokes (RANS) och Large Eddy Simulations (LES) så kan nogrannheten hos de olika simuleringsmetoderna fastställas. Fördelarna med att använda LES istället för RANS när det gäller de undersökta flödena kommer ifrån det instationära flödet i grenröret. När denna instationäritet överlappar den naturligt förekommande turbulensen så saknar modellen en rationell grund. Denna avhandling behandlar effekten av de cykliska flöderna på de valda numeriska modellerna. LES beräkningarna har bevisats kunna förutsäga medelfältet och fluktuationerna väldigt väl när man jämför med experimentell data. Effekterna som den pulserande avgasströmning har på turboladdarens turbin prestanda har också kunnat fastställas. Både konstant och pulserande inlopps randvillkor har används för turbinfallet, där det senare är ett mer realistiskt representation av den riktiga strömningsbilden innuti avgasgrenröret och turbinen. Resultaten har analyserats på flera olika sätt: snabba Fourier transformer (FFT) i enskilda punkter, medelvärden och statistik på problinjer, area och volumsbaserade metoder så som Proper Orthogonal Decomposition (POD) samt Dynamic Mode Decomposition (DMD). / <p>QC 20140919</p>

Page generated in 0.0842 seconds