• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Encryption in Delocalized Access Systems

Ahlström, Henrik, Skoglund, Karl-Johan January 2008 (has links)
<p>The recent increase in performance of embedded processors has enabled the use of computationally heavy asymmetric cryptography in small and power efficient embedded systems. The goal of this thesis is to analyze whether it is possible to use this type of cryptography to enhance the security in access systems.</p><p>This report contains a literature study of the complications related to access systems and their functionality. Also a basic introduction to cryptography is included.</p><p>Several cryptographic algorithms were implemented using the public library LibTomCrypt and benchmarked on an ARM7-processor platform. The asymmetric coding schemes were ECC and RSA. The tested symmetric algorithms included AES, 3DES and Twofish among others. The benchmark considered both codesize and speed of the algorithms.</p><p>The two asymmetric algorithms, ECC and RSA, are possible to be used in an ARM7 based access system. Although, both technologies can be configured to finish the calculations within a reasonable time-frame of 10 Sec, ECC archives a higher security level for the same execution time. Therefore, an implementation of ECC would be preferable since it is faster and requires less resources. Some further suggestions of improvements to the implementation is discussed in the final chapters.</p>
2

Encryption in Delocalized Access Systems

Ahlström, Henrik, Skoglund, Karl-Johan January 2008 (has links)
The recent increase in performance of embedded processors has enabled the use of computationally heavy asymmetric cryptography in small and power efficient embedded systems. The goal of this thesis is to analyze whether it is possible to use this type of cryptography to enhance the security in access systems. This report contains a literature study of the complications related to access systems and their functionality. Also a basic introduction to cryptography is included. Several cryptographic algorithms were implemented using the public library LibTomCrypt and benchmarked on an ARM7-processor platform. The asymmetric coding schemes were ECC and RSA. The tested symmetric algorithms included AES, 3DES and Twofish among others. The benchmark considered both codesize and speed of the algorithms. The two asymmetric algorithms, ECC and RSA, are possible to be used in an ARM7 based access system. Although, both technologies can be configured to finish the calculations within a reasonable time-frame of 10 Sec, ECC archives a higher security level for the same execution time. Therefore, an implementation of ECC would be preferable since it is faster and requires less resources. Some further suggestions of improvements to the implementation is discussed in the final chapters.
3

Fast prime field arithmetic using novel large integer representation

Alhazmi, Bader Hammad 10 July 2019 (has links)
Large integers are used in several key areas such as RSA (Rivest-Shamir-Adleman) public-key cryptographic system and elliptic curve public-key cryptographic system. To achieve higher levels of security requires larger key size and this becomes a limiting factor in prime finite field GF(p) arithmetic using large integers because operations on large integers suffer from the long carry propagation problem. Large integer representation has direct impact on the efficiency of the calculations and the hardware and software implementations. Attempts to use different representations such as residue number systems suffer from their own problems. In this dissertation, we propose a novel and efficient attribute-based large integer representation scheme capable of efficiently representing the large integers that are commonly used in cryptography such as the five NIST primes and the Pierpont primes used in supersingular isogeny Diffie-Hellman (SIDH) used in post-quantum cryptography. Moreover, we propose algorithms for this new representation to perform arithmetic operations such as conversions from and to binary representation, two’s complement, left-shift, numbers comparison, addition/subtraction, modular addition/subtraction, modular reduction, multiplication, and modular multiplication. Extensive numerical simulations and software implementations are done to verify the performance of the new number representation. Results show that the attribute-based large integer arithmetic operations are done faster in our proposed representation when compared with binary and residue number representations. This makes the proposed representation suitable for cryptographic applications on embedded systems and IoT devices with limited resources for better security level. / Graduate / 2020-07-04

Page generated in 0.0513 seconds