• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical and X-ray studies of interacting binaries

McGowan, Katherine Elizabeth January 2000 (has links)
No description available.
2

An ALMA Archival Study of the Clump Mass Function in the Large Magellanic Cloud

Brunetti, Nathan January 2017 (has links)
This thesis presents 1.3 mm and 3.1 mm continuum maps of seven star forming regions within the Large Magellanic Cloud (LMC) as observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). The data were taken as part of six projects retrieved from the ALMA public archive plus one project observed specifically for this work. We developed a technique to combine Band 3 and Band 6 maps to estimate dust-only emission corrected for free-free emission contamination. We also present an automated \texttt{clean} masking script, with a listing of the code, which we adapted and used for all of the imaging in this thesis. From these observations we identify 32 molecular clumps in the LMC and estimate their total mass from their dust emission. We derive a cumulative clump mass function ($N(\geq M) \propto M^{\alpha+1}$) and fit it with a double power law to find $\alpha_{\mathrm{low}} = -1.76^{+0.07}_{-0.1}$, $\alpha_{\mathrm{high}} = -3.3^{+0.3}_{-0.6}$, and a break mass of $2500^{+700}_{-300}$ M$_{\odot}$. Comparing to the clump mass function derived by Indebetouw et al. (2013) from carbon monoxide spectral line emission for 30 Doradus-10 shows a consistent mass range of clumps between 205 $\mathrm{M}_{\odot}$ and 5740 $\mathrm{M}_{\odot}$ as well as consistency between their single power law fit and our low mass power law index. Also comparing to core and clump mass functions from several star forming regions in the Milky Way we find consistency between most of their high mass indices and our low mass index, which is where the clump mass ranges overlap. / Thesis / Master of Science (MSc)
3

Red supergiant stars in the Local Group and beyond

Patrick, Lee Robert January 2016 (has links)
Red Supergiant (RSG) stars are the most luminous stars in the infrared sky. Their intrinsic luminosities combined with the low dust extinction observed in this regime makes these objects very attractive to study in the near-infrared (IR). In addition, RSGs are necessarily young objects, as they are tracers of recent star formation in extra-galactic systems. As the next generation of telescopes will be optimised for study in the near-IR, it is clear that, in the coming years, RSGs will play a prominent role in the way that astronomers probe the local Universe and out to larger distances with space-based observations. Therefore, it is vital to better our understanding of these objects now and develop the tools that will allow us to take full advantage of the suite of instrumentation that will become available in the near future. This thesis aims to further the understanding of RSGs by focusing on quantitative studies of near-IR spectroscopic observations. To this end, I develop an analysis technique that uses spectroscopic and photometric observations to estimate stellar parameters of RSGs. The observations are compared with synthetic spectra extracted from stellar model atmospheres, where departures from local thermodynamic equilibrium have been calculated for the diagnostic spectral lines. This technique is tested thoroughly on synthetic and real observations and is shown to reliably estimate stellar parameters in both regimes when compared with input parameters and previous studies respectively. Using the analysis routines developed in Chapter 3, in Chapter 4 I measure the chemistry and kinematics of NGC2100, a young massive cluster (YMC) of stars in the Large Magellanic Cloud, using near-IR spectroscopic observations of 14 RSGs taken with the new K-band multi-object spectrograph (KMOS). I estimate the average metallicity to be -0.43±0.10 dex, which is in good agreement with previous studies. I compare the observed location of the target RSGs on the Hertzsprung{Russell diagram with that of a Solar-like metallicity YMC and show that there appears to be no significant difference in the appearance of the RSGs in these two clusters. By combining the individual RSG spectra, I create an integrated-light cluster spectrum and show that the stellar parameters estimated, using the same technique as for individual RSGs, are in good agreement with the average properties of the cluster. In addition, I measure - for the first time - an upper limit of the dynamical mass of NGC2100 to be 15.2 X 10⁴Mʘ, which is consistent with the literature measurement of the photometric mass of the cluster. In Chapter 5, I present observations of RSGs in NGC6822, a dwarf irregular with a turbulent history, observed with KMOS. The data reduction process with KMOS is described in detail, in particular where the reduction has been optimised for the data. Stellar parameters are estimated using the technique presented in Chapter 3 and an average metallicity in NGC6822 of -0.55±0.13 dex is found, consistent with previous measurements of young stars in this galaxy. The spatial distribution of metallicity is estimated and weak evidence is found for a radial metallicity gradient, which will require follow-up observations. In addition, I show that the metallicities of the young and old populations of NGC6822 are well explained using a simple closed-box chemical evolution model, an interesting result, as NGC6822 is expected to have undergone significant recent interactions. In Chapter 6, I present multi-epoch KMOS observations of 22 RSGs in the Sculptor Group galaxy NGC55. Radial velocities are measured for the sample and are shown to be in good agreement with previous studies. Using the multi-epoch data, I find no evidence for radial velocity variables within the sample. Stellar parameters are estimated for 10 targets and are shown to be in good agreement with previous estimates. I conclude this thesis by summarising the main results and present a first-look calibration of the relationship between galaxy mass and metallicity using RSGs. By comparing the RSG metallicity estimates to metallicities estimated from ~ 50 000 Sloan digital sky survey galaxies, I show that the absolute metallicities of the two samples disagree. A more quantitative analysis requires additional RSG observations. In addition, using ~ 80 RSGs, with stellar parameters estimated in a consistent way, I show that there appears to be no dependence of the temperature of RSGs upon metallicity. This is in disagreement with current evolutionary models, which display a temperature change of ~ 450K over the studied range in metallicity. Finally, I outline potential areas for future work, focusing on follow-up studies that have been identified as a result of the work done in this thesis.
4

SMASH: Survey of the MAgellanic Stellar History

Nidever, David L., Olsen, Knut, Walker, Alistair R., Vivas, A. Katherina, Blum, Robert D., Kaleida, Catherine, Choi, Yumi, Conn, Blair C., Gruendl, Robert A., Bell, Eric F., Besla, Gurtina, Muñoz, Ricardo R., Gallart, Carme, Martin, Nicolas F., Olszewski, Edward W., Saha, Abhijit, Monachesi, Antonela, Monelli, Matteo, de Boer, Thomas J. L., Johnson, L. Clifton, Zaritsky, Dennis, Stringfellow, Guy S., van der Marel, Roeland P., Cioni, Maria-Rosa L., Jin, Shoko, Majewski, Steven R., Martinez-Delgado, David, Monteagudo, Lara, Noël, Noelia E. D., Bernard, Edouard J., Kunder, Andrea, Chu, You-Hua, Bell, Cameron P. M., Santana, Felipe, Frechem, Joshua, Medina, Gustavo E., Parkash, Vaishali, Navarrete, J. C. Serón, Hayes, Christian 25 October 2017 (has links)
The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg2 (distributed over similar to 2400 square degrees at similar to 20% filling factor) to similar to 24th. mag in ugriz. The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey, its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is similar to 15 mas and the accuracy is similar to 2 mas with respect to the Gaia reference frame. The photometric precision is similar to 0.5%-0.7% in griz and similar to 1% in u with a calibration accuracy of similar to 1.3% in all bands. The median 5s point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R. similar to. 18.4 kpc. SMASH DR1 contains measurements of similar to 100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools.
5

A Search for and Characterization of Young Stellar Objects in N206, An H II Complex in the Large Magellanic Cloud

Buehler, Tabitha Christi 01 December 2011 (has links) (PDF)
I have identified 51 young stellar object candidates in N206, an H II complex in the nearby Large Magellanic Cloud galaxy. Using archival images from the Spitzer Space Telescope, supplemented with other infrared and optical images, I located point sources in this region. I distinguished possible young stellar objects based on their spectral energy distributions, morphologies, and locations in color-magnitude space. I classified the young stellar object candidates based on their likelihood of being young stellar objects and based on their apparent evolutionary stages. The spatial distribution of these candidates in N206 indicates that star formation is being triggered in a giant molecular cloud in the region.
6

Fast stars in the Milky Way

Boubert, Douglas Philip January 2018 (has links)
I present a comprehensive investigation of fast stars in the Milky Way, from brisk disc stars to stars escaping the Galaxy. My thesis is that fast stars are the smoking guns of extreme stellar collisions and explosions, and so can act as an intermediary to studying these theoretically-unconquered astrophysical processes. In Chapter 1 I give a history of fast stars, address what it means for a star to be fast, and describe the processes that accelerate stars. I concisely summarise the Gaia mission, whose recent data releases heavily influenced this thesis. Supernovae in binary systems can fling away the companion; if a runaway companion can be associated with a supernova remnant, then together they reveal the evolution that led to the supernova. However, these associations are difficult to establish. In Ch. 2, I develop a sophisticated Bayesian methodology to search the nearest ten remnants for a companion, by combining data from Gaia DR1 with a 3D dust-map and binary population synthesis. With Gaia DR2, I will identify companions of tens of supernova remnants and thus open a new window to studying late-stage stellar evolution. It is unknown why 17% of B stars are spinning near break-up; these stars are termed Be stars because of emission lines from their ejected material. Their rapid spin could be due to mass transfer, but in Ch. 3 I show this would create runaway Be stars. I demonstrate using a hierarchical Bayesian model that these exist in sufficient numbers, and thus that all Be stars may arise from mass transfer. The stars escaping the Milky Way are termed hypervelocity stars. In Ch. 4, I overturn the consensus that the hypervelocity stars originated in the Galactic centre by showing that a Large Magellanic Cloud (LMC) origin better explains their distribution on the sky. In Ch. 5 I present three ground-breaking hypervelocity results with Gaia DR2: 1) only 41 of the 524 hypervelocity star candidates are truly escaping, 2) at least one of the hypervelocity stars originates in the LMC, and 3) the discovery of three hypervelocity white dwarf runaways from thermonuclear supernovae.
7

Study of Evolved Stellar Populations in the Magellanic Clouds

Choudhury, Samyaday January 2015 (has links) (PDF)
The Magellanic Clouds (MCs) consist of a pair of galaxies, the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC), which are located at a distance of 50 kpc and 60 kpc, with stellar masses of 1010 M and 109 M , respectively. Morphologically they are categorized as irregular type galaxies. The MCs are gas rich and metal poor (Z=0.008 for LMC, and 0.004 for SMC) as compared to the Milky Way (MW), and have active star-forming regions. Their proximity and location at high galactic latitude enable us to resolve their individual populations as well as detect faint stellar populations. It is well known that the MCs are interacting with each other, as well as with the MW. The interaction is supported by the presence of the Magellanic Bridge and the Magellanic Stream. The evolved stellar populations in the MCs help us to understand their evolution and interaction process. The MCs host both Population I as well as Population II stars. This extended range of star formation is a valuable source of information to understand the formation and evolution of galaxies in general, and the MCs in particular. Evolved stellar popu-lation means the stars that have evolved o the main sequence and the giants, such as red giants (RGs), red clump stars, and asymptotic giant branch stars. There is a dominant population of evolved stars present in the MCs, in star clusters as well as in the eld. The aim of the thesis is to study the evolved stellar populations for one of the component of the MCs, the LMC. The study is primarily divided into two parts. (1) Study of sparse star clusters in the LMC: To increase our understanding of sparse star clusters in the LMC, with well estimated parameters, using deep Washington photometric data for 45 LMC clusters. (2) To estimate a metallicity map of LMC: In order to understand the metallicity variation across the galaxy. This is done by creating a high spatial resolution metallicity map of the LMC, using red giant branch (RGB) stars, with the help of photometric data and calibrated using spectroscopic studies of RGs in eld and star clusters. The introduction to the thesis study along with the aim are described in Chapter 1 of the thesis. The three sets of photometric data used for this study are described in Chapter 2. The data sets are: CT1 Washington photometric data for 45 star clusters within the LMC, the VI photometric data from the Optical Gravitational Lensing Experiment Phase-III survey (OGLE III), and the Magellanic Cloud Photometric Survey (MCPS). Study of sparse star clusters in the LMC: A systematic study is per-formed to analyse the 45 cluster candidates, to estimate their parameters (radius, reddening, and age) using the main-sequence turn-o (MSTO), as well as the evolved portion of the colour{magnitude diagram (CMD). The basic parameters were estimated for 33 genuine clusters, whereas the other 12 cluster candidates have been classi ed as possible clusters/asterisms. The study of 33 star clusters are presented in Chapter 3. These clus-ters are categorized as genuine star clusters based on their strong density enhancement and cluster features with respect to their surrounding eld regions. Out of the 33 clusters, 23 are identi ed as single clusters and 10 are found to be members of double clusters. Detailed discussions of all the individual clusters are presented. The estimated parameters for the single and double clusters are listed in two di erent tables. About 50% of the clusters are in the age range 100{300 Myr, the rest of them being older or younger. Comparison with previous age estimates shows some agreement as well as some deviation. The remaining 12 clusters which could not be categorized as genuine star clusters are studied in Chapter 4. These clusters have poor (/suspi-cious) density enhancement and cluster features when compared to their surrounding elds. It is important to study such cluster candidates, as these objects probe the lower limit of the cluster mass function. Detailed discussion on these individual objects are presented and their estimated parameters are tabulated in this chapter. A detailed discussion based on the study of all the 45 inconspicuous clusters is presented in this chapter, including the estimated sizes (radii 2{10 pc), reddening with respect to eld, and location in the LMC. The mass limit estimated for genuine clusters is found to be 1000 M , whereas for possible clusters/asterisms it is few 100 M , using synthetic CMDs. The study of sparse clusters enlarged the number of objects con rmed as genuine star clusters (33) and estimated their fundamental parameters. The study emphasizes that the sizes and masses of the studied sample are found to be similar to that of open clusters in the MW. Thus, this study adds to the lower end of cluster mass distribution in the LMC, suggesting that the LMC, apart from hosting rich clusters, also has formed small, less massive open clusters in the 100{300 Myr age range. The 12 cases of possible clusters/asterisms are worthy of attention, in the sense that they can throw light on the survival time of such objects in the LMC. Photometric metallicity map of the LMC using RGB stars: A metallic-ity map of the LMC is estimated using OGLE III and MCPS photometric data. This is a rst of its kind map of metallicity up to a radius of 4{5 de-grees, derived using photometric data and calibrated using spectroscopic data of RGB stars. The RGB is identi ed in the V, (V I) CMDs of small areal subregions of varying sizes in both data sets. The slope of the RGB is used as an indicator of the average metallicity of a subregion, and this RGB slope is calibrated to metallicity using spectroscopic data for eld and cluster RGs in selected subregions. The metallicity map estimated using OGLE III photometric data is presented in Chapter 5. A method to identify the RGB of small subre-gions within the LMC and estimate its slope by using a consistent and automated method was developed. The technique is robust and indepen-dent of reddening and extinction. The details of calibrating the RGB slopes to metallicities, using previous spectroscopic results of RGs in eld and star clusters are presented. The OGLE III metallicity maps are pre sented, based on four cut-o criteria to separate regions with good ts. The OGLE III map has substantial coverage of the bar, the eastern and western LMC, but does not cover the northern and southern regions. The OGLE III metallicity map shows the bar region to be metal rich whereas the eastern and western regions to be relatively metal poor. The mean metallicity is estimated for three di erent regions within the LMC. For the complete LMC the mean [Fe/H] is = 0.39 dex ( [Fe/H] = 0.10); for the bar region it is = 0.35 dex ( [Fe/H] = 0.9); and for the outer LMC it is = 0.46 dex ( [Fe/H] = 0.11). The metallicity histogram for these di erent regions are also estimated. A radial metallicity gradient is estimated in the de-projected plane of the LMC. The metallicity gradient is seen to remain almost constant in the bar region (till a radius of 2.5 kpc) and has a shallow gradient of 0.066 0.006 dex kpc 1 beyond that till 4 kpc. In Chapter 6 the metallicity map based on MCPS photometric data is estimated. The MCPS data covers more of the northern and south-ern LMC (less of eastern and western regions) and is important to be analysed in order to reveal the metallicity trend of the overall disk. The systematic di erences between the lter systems of MCPS and OGLE III are corrected, and the MCPS slopes are then calibrated using the OGLE III slope{metallicity relation. The MCPS metallicity maps are presented, based on four cut-o criteria to separate regions with good ts. The bar region is found to be metal rich as was found using OGLE III data, whereas the northern and southern regions are marginally metal poor. The mean metallicity estimated for the complete LMC is = 0.37 dex ( [Fe/H] = 0.12); and for the outer LMC it is = 0.41 dex ( [Fe/H] = 0.11). The metallicity histogram for these di erent regions are estimated and compared with the OGLE III distribution. The metallicity range of the complete LMC is found to be almost similar for both data sets. The metallicity distribution within the bar has a narrow range as found using both data sets. The slight di erence between mean metallicity of outer LMC for the two data sets is attributed to their coverage. We suggest that the northern and southern regions of the LMC could be marginally more metal rich than the eastern and western regions. The metallicity gradient of the LMC disk, estimated from MCPS data is found to be shallow 0.049 0.002 dex kpc 1 till about 4 kpc. We also constructed a metallicity map of outliers using both OGLE III and MCPS data, and identi ed subregions where the mean metallic-ity di ers from the surrounding areas. We suggest further spectroscopic studies in order to assess their physical significance. The detailed conclusion of the thesis and future work are presented in Chapter 7. From the study of sparse star clusters in the LMC, it is concluded that LMC has open cluster like star cluster systems. It is important to include them to understand the cluster formation history (CFH) and their survival time scale. Presently, our understanding of the CFH is dominated by rich clusters. The bar of the LMC is found to be the most metal rich region, and the LMC metallicity gradient though shallow, resembles the gradient seen in spiral galaxies. The gradient is also similar to that found in our Galaxy. The higher metallicity in the bar region might indicate an active bar in the past.

Page generated in 0.0607 seconds