• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 21
  • 15
  • 14
  • 14
  • 12
  • 11
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

砂の力学モデルとしての多重せん断モデルの大変形解析の定式化およびその適用性に関する研究

上田, 恭平 23 March 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15312号 / 工博第3191号 / 新制||工||1480(附属図書館) / 27790 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 井合 進, 教授 田村 武, 教授 岡 二三生 / 学位規則第4条第1項該当
12

Large Deformation Dynamic Analysis Method for Partially Saturated Elasto-Viscoplastic Soils / 不飽和弾粘塑性土の大変形動的解析法

SHAHBODAGH KHAN, Babak 26 September 2011 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第16375号 / 工博第3456号 / 新制||工||1523(附属図書館) / 29006 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 岡 二三生, 教授 勝見 武, 准教授 木元 小百合 / 学位規則第4条第1項該当
13

Meshless method for modeling large deformation with elastoplasticity

Ma, Jianfeng January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Prakash Krishnaswami / Xiao J. Xin / Over the past two decades meshless methods have attracted much attention owing to their advantages in adaptivity, higher degree of solution field continuity, and capability to handle moving boundary and changing geometry. In this work, a meshless integral method based on the regularized boundary integral equation has been developed and applied to two-dimensional linear elasticity and elastoplasticity with small or large deformation. The development of the meshless integral method and its application to two-dimensional linear elasticity is described first. The governing integral equation is obtained from the weak form of elasticity over a local sub-domain, and the moving least-squares approximation is employed for meshless function approximation. This formulation incorporates: a subtraction method for singularity removal in the boundary integral equation, a special numerical integration for the calculation of integrals with weak singularity which further improves accuracy, a collocation method for the imposition of essential boundary conditions, and a method for incorporation of natural boundary conditions in the system governing equation. Next, elastoplastic material behavior with small deformation is introduced into the meshless integral method. The constitutive law is rate-independent flow theory based on von Mises yielding criterion with isotropic hardening. The method is then extended to large deformation plasticity based on Green-Naghdi’s theory using updated Lagrangian description. The Green-Lagrange strain is decomposed into the elastic and plastic part, and the elastoplastic constitutive law is employed that relates the Green-Lagrange strain to the second Piola-Kirchhoff stress. Finally, a pre- and post-processor for the meshless method using node- and pixel-based approach is presented. Numerical results from the meshless integral method agree well with available analytical solutions or finite element results, and the comparisons demonstrate that the meshless integral method is accurate and robust. This research lays the foundation for modeling and simulation of metal cutting processes.
14

Detection of Time-Varying Structures by Large Deformation Diffeomorphic Metric Mapping to Aid Reading of High-Resolution CT Images of the Lung / 非線形重ね合わせ方法"Large Deformation Diffeomorphic Metric Mapping"を用いた胸部高解像度CT画像の経時変化の検出

Sakamoto, Ryo 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第18460号 / 医博第3915号 / 新制||医||1005(附属図書館) / 31338 / 京都大学大学院医学研究科医学専攻 / (主査)教授 伊達 洋至, 教授 平岡 眞寛, 教授 福山 秀直 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
15

A Novel Lagrangian Gradient Smoothing Method for Fluids and Flowing Solids

Mao, Zirui 11 June 2019 (has links)
No description available.
16

On the Application of CISAMR for Modeling Hyperelastic Materials Undergoing Finite Deformation

Luo, Ke 12 October 2018 (has links)
No description available.
17

Evaluation of the approximations involved in analyzing high rate shear experiments of brain tissue using finite element analysis

Bao, Jing January 2011 (has links)
The results of brain tissue finite element (FE) models under high rate shear deformation are affected by several factors. This thesis evaluated the effects of hourglass control, Poisson's ratio and element type in such simulations. Moreover, a comparison of FE and analytical models were performed related to boundary conditions. The simulations and optimizations were executed in ANSYS, LS-DYNA and LS-OPT. A Rivlin hyperelastic material model with linear viscoelasticity was used to describe the mechanical response of brain tissue. Examples of inverse FE material characterization of representative brain shear experiments at strain rates of 800, 500, 120 and 90 S-1 were studied and the results were validated by the ability to predict wave traveling times and deformed configurations. The difference between experimental and idealized shear strain increased with aspect ratio. One-point-integrated brick element combined with stiffness hourglass control gave the best result. A smaller Poisson's ratio that is still physically meaningful, e.g. 0.495, is preferable. / Mechanical Engineering
18

Comportement élastique linéaire et non-linéaire du bois en relation avec sa structure / Linear elastic and non-linear behaviour of wood according to its structure

Dinh, Anh Tuan 21 November 2011 (has links)
Le bois est un matériau complexe, hétérogène et anisotrope. Ses propriétés mécaniques varient fortement en fonction de l'essence et de l'échelle considérées. Pour mieux comprendre le comportement du bois en fonction de sa structure, nous proposons dans le cadre de cette thèse une étude expérimentale à l'échelle des tissus qui est réalisée sur plusieurs types de bois : bois de peuplier, y compris bois de tension et bois d'épicéa. Compte tenu des faibles dimensions des échantillons testés, les mesures de déformation sont effectuées « sans contact » afin de s'assurer de ne pas perturber l'échantillon en cours de l'essai.Les premières séries de mesures sont réalisées sur les trois zones (tendue, normale, opposée) et selon les 3 directions matérielles (longitudinale, radiale et tangentielle) d'une tige de peuplier inclinée. Les résultats obtenus permettent de comparer des comportements mécaniques du bois de peuplier dans toutes les zones considérées en fonction de ses propriétés microscopiques.Les deuxièmes séries de mesures sont réalisées en compression, grandes déformations, dans la chambre d'un ESEM (Microscope électronique à balayage environnemental) sur du bois feuillu (peuplier) et sur du bois résineux (épicéa). Grâce aux images obtenues en période d'essai, du domaine élastique jusqu'à la densification, la réponse de chaque type du bois à la même sollicitation est illustrée.Enfin, une partie de la modélisation numérique par la MPM (Materiel Point Method) est proposée dans notre projet envisagé comme prolongement de ce travail. Il permettra de simuler le comportement mécanique du bois en grande déformation. / Wood is a complex, heterogeneous and anisotropic material. Its mechanical properties are highly variable according to the species and scale considered. In order to better understand the behaviour of wood in relation to its structure, this PhD work proposes an experimental study at the tissue scale. This work is performed on several types of wood: poplar, including tension wood and spruce. Considering the small dimensions of the tested samples, a “non-contact” method is used to limit perturbations, therefore ensuring the measurement precision.The first series of measurements were realised in the three zones (tension, normal, opposite) and for the three material directions (longitudinal, radial and tangential) of an inclined poplar tree. The results obtained allowed us to compare the mechanical properties of poplar wood in all zones in relation to their microscopic features.The second series of tests were performed in the chamber of an ESEM (Environmental Scanning Electron Microscope) on hardwood (poplar) and softwood (spruce). With the images obtained during the test, from the elastic zone to the densification, the response of each type of wood to the same solicitation is presented and commented.Finally, some numerical modelling by the MPM (Material Point Method) is proposed as prospects of the present work. It will allow the mechanical behaviour of wood in large deformation to be predicted.
19

Modeling Degradation Mechanisms in Rechargeable Lithium-Ion Batteries

Aniruddha Jana (6639500) 14 May 2019 (has links)
<div>A physics-based, multiscale framework is presented to describe the degradation in rechargeable lithium-ion batteries. The framework goes beyond traditional (empirical) coulomb-counting approaches and enables the identification of different degradation regimes of behavior. Macroscopically, five degradation mechanisms: (i) solid electrolyte interphase (SEI) growth on the anode, (ii) electrolyte oxidation on the cathode, (iii) anode active material loss and (iv) cathode active material loss due to chemomechanical fracture, and (v) dendrite growth were identified and modeled. Great emphasis was placed on describing the physics of lithium dendrite growth in order to demonstrate five distinguishable regimes: thermodynamic suppression regime, incubation regime, tip-controlled growth regime, base-controlled growth regime, and mixed growth regime. Mesoscopically, three local dendrite growth mechanisms are identified: 1) electrochemical shielding, where there is practically no electrodeposition/electrodissolution, 2) stress-induced electrodissolution and electrodeposition on those interfaces directly facing each other, generating a self-sustained overpotential that pushes the dendrites towards the counter electrode, and 3) lateral plastic extrusion in those side branches experiencing non-hydrostatic stresses. Overall, the experimentally validated theoretical framework allows to fundamentally understand battery degradation and sets the stage to design high energy density and fast charging rechargeable batteries. </div><div><br></div>
20

Effects of joint constraints on deformation of multi-body compliant mechanisms

Guo, Jiajie 15 November 2011 (has links)
Motivated by the interests to understand bio-structure deformation and exploit their advantages to create bio-inspired systems for engineering applications, a curvature-based model for analyzing compliant mechanisms capable of large deformation in a three dimensional space has been developed. Unlike methods (such as finite element) that formulate problems based on displacements and/or rotational angles, superposition holds for curvatures in the case of finite rotation but not for rotational angles; thus the curvature-based formulation presents an advantage in presenting nonlinear geometries. Along with a generalized constraint that relaxes traditional boundary constraints (such as fixed, pinned or sliding constraint) on compliant mechanisms, the method of deriving the compliant members in the same global referenced frame is presented. The attractive features of the method, which greatly simplifies the models and improves the computation efficiency of multi-body system deformation where compliant beams play an important role, have been experimentally validated. To demonstrate the applicability of this proposed method to a broad spectrum of applications, three practical examples are given; the first example verifies the generalized constraint by analyzing the multi-axis rotation motion within a natural human knee joint and investigates the human-exoskeleton interactions through dynamic analysis. The second example studies a deformable bio-structure by incorporating the generalized joint constraint into the curvature-based model for automated poultry meat processing. The last example designs a bio-inspired robot with a compliant mechanism to serve as a flexonic mobile node for ferromagnetic structure health monitoring. The analytical models have been employed (with experimental validation) to investigate the effects of different joint constraints on the mechanism deformations. It is expected that the proposed method will find a broad range of applications involving compliant mechanisms.

Page generated in 0.1146 seconds