Spelling suggestions: "subject:"large time dynamics"" "subject:"marge time dynamics""
1 |
Mesures invariantes pour des équations aux dérivées partielles hamiltoniennes / Invariant measures for Hamiltonian PDESy, Mouhamadou 11 December 2017 (has links)
Dans cette thèse, on s'intéresse à l'étude qualitative des solutions d'équations aux dérivées partielles hamiltoniennes par le biais de la théorie des mesures invariantes. L'existence d'une telle mesure pour une EDP fournit, en effet, des informations sur sa dynamique en temps long. Nous étudierons deux situations quelque peu "extrémales". Dans une première partie, nous nous intéressons aux équations ayant une infinité de lois de conservation et dans une seconde, aux équations dont on ne connaît qu'une seule loi de conservation non triviale.Nous étudions les premières équations par le biais de l'équation de Benjamin-Ono. Il s'agit d'un modèle de description des ondes internes dans un fluide de grande profondeur.Nous nous intéressons à la dynamique de cette équation sur l'espace C^infty(T) en lui construisant une mesure invariante sur cet espace. Par conséquent, une propriété de récurrence presque sûre (par rapport à cette mesure) est établie pour les solutions infiniment lisses de cette équation. Nous prouvons, ensuite, des propriétés de non-dégénérescence pour cette mesure. En effet, nous montrons que, via cette mesure, une infinité de fonctionnelles indépendantes ont des distributions absolument continues par rapport à la mesure de Lebesgue sur R. Enfin, nous montrons que cette mesure est de nature au moins $2$-dimensionnelle. Dans ce travail, nous avons utilisé l'approche Fluctuation-Dissipation-Limite (FDL) introduite par Kuksin-Shirikyan. Notons qu'une propriété de récurrence presque sûre a été établie pour les solutions de régularité Sobolev de l'équation de Benjamin-Ono, dans les travaux de Deng, Tzvetkov et Visciglia.Dans l'autre partie de la thèse, nous abordons l'équation de Klein-Gordon à non-linéarité cubique, c'est un exemple d'EDPs hamiltoniennes pour lesquelles il n'est connu qu'une seule loi de conservation non triviale. Cette équation modélise l'évolution d'une particule massive relativiste. Ici, nous considérons les cas où l'équation est posée sur le tore tri-dimensionnel ou sur un domaine borné de R^3 à bord assez régulier. Nous lui construisons une mesure invariante concentrée sur l'espace de Sobolev H^2, en utilisant toujours l'approche FDL. Un autre aspect de ce travail est d'étendre le cadre de cette approche au contexte des EDPs à une seule loi de conservation, en effet, dans les travaux antérieurs, l'approche FDL avait nécessité deux lois de conservation pour fonctionner. Puis nous établissons une propriété de non-dégénérescence pour la mesure construite. Par conséquent, une propriété de récurrence presque sûre, par rapport à la mesure construite, est prouvée. Notons que des travaux antérieurs dus à Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut et Xu ont traité la question de mesure de Gibbs invariante pour des équations des ondes dans un contexte radial. / In this thesis, we are concerned with the qualitative study of solutions of Hamiltonian partial differential equations by the way of the invariant measures theory. Indeed, existence of such a measure provides some informations concerning the large time dynamics of the PDE in question. In this thesis we treat two "extremal" situations. In the first part, we consider equations with infinitely many conservation laws, and in the second, we study equations for which we know only one non-trivial conservation law.We study the first equations by considering the Benjamin-Ono equation. The latter is a model describing internal waves in a fluide of great depth.We are concerned with the dynamics of that equation on the space C^infty(T) by constructing for it an invariant measure on that space. Accordingly, an almost sure (w.r.t. this measure) recurrence property is established for infinitely smooth solutions of that equation. Then, we prove qualitative properties for the constructed measure by showing that there are infinitely many independent observables whose distributions via this measure are absolutely continuous w.r.t. the Lebesgue measure on R. Moreover, we establish that the measure is of at least 2-dimensional nature. In this work, we used the Fluctuation-Dissipation-Limit (FDL) approach introduced by Kuksin and Shirikyan. Notice that an almost sure recurrence property for the Benjamin-Ono equation was established on Sobolev spaces by Deng, Tzvetkov and Visciglia.In the second part of the thesis, we consider the cubic Klein-Gordon equation, which is an example of Hamiltonian PDEs for which we know only one conservation law. This equation models the evolution of a massive relativistic particle. Here, we consider both the case of the tri-dimensional periodic solutions and those defined on a bounded domain of R^3. In both settings, we construct an invariant measure concentrated on the Sobolev space H^2xH^1, again with use of the FDL approach. Another aspect of this work is to extend the FDL approach to the context of PDEs having only one conservation law; indeed, in previous works, this approach required two conservation laws. Qualitative properties for the measure and almost sure (w.r.t. this measure) recurrence for H^2-solutions are proven. Notice that previous works by Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut and Xu have treated the invariant Gibbs measure problem in the radial symmetry context for waves equations.
|
Page generated in 0.0667 seconds