Spelling suggestions: "subject:"largemouth mass (micropterus salmon)"" "subject:"largemouth mass (micropeterus salmon)""
1 |
THE DIRECT AND INDIRECT EFFECTS OF NUTRIENT ENRICHMENT ON THE PARASITES OF LARGEMOUTH BASSStanley, Adrienne 01 August 2023 (has links) (PDF)
The interactions between parasites, hosts, and the ecosystems they live in are complex and diverse. This can make predicting how they will respond to pressures like nutrient enrichment difficult. However, this endeavor is important, due to the far-reaching effects it has on ecosystems functioning, industries like aquaculture, and even human health. Even with the significance of this topic, there are key parts of the picture that have received little research attention. For this reason, I chose to study the effects of nutrient enrichment on parasite-host interactions at two different scales, first investigating the interaction directly between parasites and their host, and then manipulating experimental ponds to look at trophic effects. Using the theory of ecological stoichiometry as a conceptual framework allowed for comparison across the two investigations. In both studies, I used largemouth bass and the macro parasites of their digestive tract as my study system, due to the importance of largemouth bass as sport fish, their high trophic status, and diverse parasite assemblages. My first study examined the effects of eutrophication on parasite-host interactions occurring within the host. It centered on four hypotheses: 1) the nutrient content of different host tissues (infection sites) varies within and across hosts, 2) the nutrient contents of parasite genera differ from that of their host tissue(s), 3) the nutrient contents of parasite genera differ from one another, and 4) nutrient availability within specific host tissues is related to the nutrient content and abundance of parasite genera within tissues. I quantified the nutrient content (carbon (C), nitrogen (N), and phosphorous (P) and their ratios) of parasitic infracommunities in the tissues of the liver, stomach, pyloric caeca, intestines, and visceral mesentery of 30 largemouth bass (Micropterus salmoides). I found stoichiometric variation across host tissues and that fish collection site explained variation in pyloric caeca N:P ratios. Parasitic genera differed in their nutrient content with actively feeding parasite forms having higher %N and lower C:N ratios than encysted/non-reproductive forms. In addition, the %C of both actively feeding parasites varied across organs, and, for one genus, this variation reflected differences in host tissue %C. Finally, I found that the total number of actively feeding parasites in the pyloric caeca increased with that tissue’s N:P ratio. My results suggest that parasites encounter significant variation in nutrient availability within and across hosts, and that this variation can influence the nutrient content and abundance of some actively feeding parasites within specific tissues. To determine if the effects from my first study were a result of nutrient changes to host tissues or if they were an artifact of changes occurring at other trophic levels caused by nutrient addition, I conducted an experimental manipulation of a short trophic system. I applied two treatments, a fertilized treatment and a control, to 14 ponds stocked with largemouth bass. I hypothesized that adding a low N:P fertilizer to the ponds would result in fewer parasites in the pyloric caeca of the bass in accordance with findings from my previous work. Alternatively, I hypothesized that indirect changes to intermediate hosts would be responsible for changes in parasite abundance. To measure the effects of nutrient additions on multiple trophic levels, samples of fine particulate organic matter (FPOM), benthic invertebrates, and vertebrate prey were taken from each pond. Stocked bass were retrieved and dissected to obtain samples for nutrient analysis from their pyloric caeca, and to quantify parasite abundances. My treatment was able to affect the %P, C:N, C:P, and N:P of the FPOM in the ponds. Benthic invertebrate biomass was negatively correlated with FPOM %P. I did not find a direct effect of benthic invertebrates on vertebrate prey species, but fertilized ponds had a smaller decrease in the number of vertebrate prey over the course of the experiment. Counterintuitively, the %N of the pyloric caeca of fish in the fertilized ponds decreased, and the %C and C:N increased in relation to the number of vertebrate prey, but %P did not change. The treatment status of the pond and the nutrients of the pyloric caeca did not affect the number of parasites that were found, but parasite numbers were positively associated with prey fish. This result would suggest the number of intermediate hosts, in this case, prey fish, is the determining factor for parasitic loads in the bass I collected. The indirect effects of trophic interaction and the direct effects of changes to host and parasite dynamics both play important roles in predicting the outcome of eutrophication on disease. The conflicting results of these two studies highlight the need for in-depth knowledge of the systems being affected by nutrient additions.
|
2 |
Nearshore habitat and land-use effects on trophic interactions and growth of largemouth bass and bluegill in Indiana's glacial lakesPatricia A Nease (7469945) 17 October 2019 (has links)
Glacial lakes, such as those in the Midwest region
of the United States, are ecologically and economically important, and they
provide a wide range of ecosystem services, such as habitat for wildlife and
fishes, flood control and recreational boating. Glacial lakes often support
locally important sport fisheries, such as largemouth bass <i>Micropterus salmoides</i> and bluegill <i>Lepomis macrochirus</i>,<i> </i>which
are partially dependent on suitable habitat within lakes. Nearshore vegetation
is often removed by lakeshore landowners for perceived aesthetics and boat
access, or by area managers as a form of indirect fisheries management and
invasive species control. The connection between nearshore vegetation and fish
population health, though widely studied is somewhat unclear. In the two
research chapters of this thesis we attempted to further understanding of the
environmental factors that influence vegetation abundance and distribution, how
vegetation abundance and distribution influences fish population abundance and
size structure, and how young-of-year (YOY) largemouth bass utilize habitats
within the nearshore environment. In the first research chapter, we used
structural equation modeling (SEM) and data collected by the Indiana Department
of Natural Resources to quantify the complexity of relationships among catchment
characteristics (e.g., catchment size), lake morphology, water quality,
vegetation abundance and distribution, and fish population abundance and size
structure. Across multiple lakes, lake productivity was more influential in
explaining cross-lake variation of largemouth bass and bluegill proportional
stock density (PSD) and largemouth bass catch per unit effort (CPUE) than
vegetation. This may be a result of the feedback between phytoplankton
production and rooted vegetation production. The models we constructed provide
insights into the complexity of environmental variables that influence
nearshore vegetation and fish populations. In the second research chapter we
used stable isotopes (δ<sup>13</sup> Carbon, δ<sup>15</sup> Nitrogen, δ<sup>18</sup>
Oxygen and δ<sup>2</sup> Hydrogen) to examine the consistency of habitat use
and foraging of YOY largemouth bass within Indiana glacial lakes. We observed
spatial variation in stable isotope ratios of YOY largemouth bass between
habitat types and sites. Additionally, there were significant, positive
relationships between δ<sup>13</sup>C of locally collected potential prey items
and δ<sup>13</sup>C of YOY largemouth bass suggesting localized foraging patterns.
Later in the summer, as young bass grew in size and likely switched to
piscivory, we did not observe similar spatial variation in young bass stable
isotopes or spatial relationships between prey and the young bass suggesting
more homogeneous foraging patterns. Understanding the habitat use patterns of
young bass may allow for more efficient and effective management of the
nearshore environment. Overall, a greater consideration for the complexity of
relationships between nearshore habitat and fish populations may facilitate
more effective management.
|
Page generated in 0.3331 seconds