Spelling suggestions: "subject:"larval settlement"" "subject:"larval ettlement""
1 |
Experimental ecology of epialgal bryozoansWhitehead, John William January 1998 (has links)
No description available.
|
2 |
A preliminary study to quantify the suitable substratum of marine sessile invertebrates.Chou, Ya-Lan 08 August 2003 (has links)
Seasonal reproduction of marine sessile organisms may be an adaptation of seasonal variation in suitable substratum availability. This research is focused on how to quantfy the suitable substratum of marine sessile organisms. Then the potential seasonal change of suitable substrate availability can be assessed.
We tested 1-1.5 meters scale is a population closed spatial scale. At this scale we try to find ¡§intensification phenomenon¡¨ using different-size panels. If intensification phenomenon dose exist at 1-1.5 meter scale, then the amount of the suitable substratum can be estimated. We also compared three different current environments at Tiaoshi area in Nan-wan-Bay, the 3rd Nuclear Power Plant Inlet and the Hobihu Yacht Wharf to find out if the intensification phenomenon exists at this different situations. Lastly, sand and reef area were compared. Since reef areas has more suitable natural substratum than sand areas.
The intensification phenomenon at 1-meter scale was not found. The larval density in water column might be highly heterogeneous even in very small scale. On the other hand, we consistently found higher settlement density in sand areas than in reef areas. This phenomenon may well have been caused by the intensification phenomenon.
|
3 |
Recruitment And Restoration Of The Oyster Crassostrea Virginica In Areas With Intense Boating Activity In Mosquito Lagoon, FloridaWall, Lisa Michele 01 January 2004 (has links)
Productivity, diversity and survival of estuaries are threatened by explosive coastal population growth and associated recreational activities. One major area of recreational growth has been the number of small pleasure craft motoring in shallow waters at high speeds. On the east coast of Central Florida in the Indian River Lagoon system, intense boating activity occurs year-round and intertidal reefs of the eastern oyster Crassostrea virginica with dead margins (piles of disarticulated shells) on their seaward edges are commonly found adjacent to major boating channels. The cause(s) of the dead margins is unclear. However, the disarticulated shells may be reducing reef sustainability if these surfaces are unavailable for larvae. Recruitment trials were run on eight reefs (4 with dead margins, 4 without) in three 8-week trials in 2001/2002. Significant differences were found for location on reef and season. For survival of recruits, significant differences were found for reef type, location on reef, and season. Sediment loads, percent silt/clay, and relative water motion were all found to be significantly higher on impacted reefs. Spring months were found to be the optimal time for larval recruitment to increase larval set and survival and to also decrease the effects of sedimentation and water motion. Based on these results, experimental restoration began May 2003 to develop an ecologically and economically feasible restoration protocol for this intertidal region. Four different densities of shells (0, 16, 25, 36) were attached to vexar mesh mats (45 X 45 cm) displaying shells perpendicular to the substrate. 360 mats were randomly deployed at one of six dentified optimum recruitment locations. Recruitment increased through June and was significantly higher on mats with 36 shells. This was followed by a large, expected decline in recruitment and survival in July/August, due to competition, predation and/or extreme high temperatures. Total live oysters on the restoration mats significantly increased during October 2003 through February 2003. These newly-created oyster reefs are moveable and provide optimal substrate and larval set to be transported post-recruitment to areas resource managers have slated for restoration to aid in reef sustainability. To determine the potential negative effects of flow and sediment levels on oyster larval settlement, which may be associated with an increase in boating actitivity, laboratory experiments were conducted. Eighteen trials, with competent oyster larvae, nine in flowing-water and nine in still-water were run at three sediment levels: no sediment, low sediment, and high sediment loads. Larval settlement was significantly higher in the still-water trials and both high and low sediment loads significantly reduced larval settlement.
|
4 |
Reproduction Patterns of Scleractinian Corals in the Central Red SeaBouwmeester, Jessica 12 1900 (has links)
Early work on the reproductive seasonality of corals in the Red Sea suggested that corals
exhibit temporal reproductive isolation, unlike on the Great Barrier Reef where many
species spawn in synchrony. More recent work has however shown high synchrony in the
maturity of gametes in Acropora species, suggesting multi-specific spawning is likely to
occur in the Red Sea. In this thesis I investigate the patterns of coral reproduction in the
central Red Sea. The spawning season in the central Red Sea lasts four months, from
April to July and spawning occurs on nights around the full moon. During this period
Acropora species show a peak of spawning in April, with some species spawning again
in May. The level of synchrony, quantified with a spawning synchrony index, is
comparable to other locations where multi-specific spawning has been reported.
Observations over two consecutive years show that the synchrony of spawning was lower
in spring 2012 than in spring 2011, and thus that spawning patterns are variable from one
year to the other. Coral settlement patterns on artificial substrata confirmed a main
spawning season in the spring but also supported reproductive data suggesting that some
Porites spawn in October-November. Settlement was studied over 2.5 years on a reef,
which had suffered recently from high mortality after a local bleaching event. Settlement
appeared low but post-bleaching studies from other locations indicated similar
abundances and showed that recruits generally did not increase until 5 years after the
bleaching event. Abundance of juvenile corals however started to increase significantly
three years after the bleaching. Successful recruitment, although low suggests that the
coral assemblage on the affected reef will most likely recover as long as it is not affected
by another disturbance.
|
5 |
Auditory Sensitivity of Sergeant Majors (<em>Abudefduf saxatilis</em>) from Post-settlement Juvenile to AdultEgner, Sarah A 09 April 2004 (has links)
There is much evidence supporting the idea that pelagic larvae of coral reef fishes are active participants in their dispersal and return to a reef, however, the mechanisms used to navigate are still uncertain. It has been proposed that sensory cues, such as hearing, play a role. Sound is a potentially important cue for organisms in marine environments, especially in noisy environments like coral reefs. Sensory organs, including otolithic organs, of most coral reef fish form within the first few days of life. The auditory brainstem response (ABR) technique was used to measure hearing on a wide size range of sergeant majors (Abudefduf saxatilis). Complete audiograms were measured for 32 fish ranging in size from 11-121 mm. Significant effects of standard length on hearing thresholds at 100 and 200 Hz were detected. At these lower frequencies, thresholds increased with an increase in size. All fish were most sensitive to the lower frequencies (100-400 Hz). The frequency range that fish could detect sounds was dependent upon the size of the fish; the larger fish (>50mm) were more likely to respond to higher frequencies (1000-1600 Hz). A. saxatilis have poor hearing sensitivity in comparison to audiograms of other hearing generalists including other species of Pomacentrids. Due to the high hearing thresholds found in this study in comparison to recorded ambient reef noise, it is unlikely that sound plays a significant role in the navigation of the pelagic larvae of sergeant majors to the return of the reef from large distances.
|
6 |
Investigation of Larval Sensory Systems in the Marine Bryozoan, Bugula neritinaPrice, Heather Leigh 01 June 2015 (has links) (PDF)
Bugula neritina is a sessile marine bryozoan with a pelagic larval stage. Larvae frequently settle on boat hulls, facilitating the introduction of B. neritina to bays and estuaries worldwide. Adrenergic agonists, such as the vertebrate hormone noradrenaline, inhibit larval settlement in a variety of marine invertebrate species, including B. neritina. Light also inhibits B. neritina larval settlement, yet the underlying mechanisms by which light and adrenergic compounds exert their effects on larvae are not well understood. Octopamine is considered the invertebrate analog of noradrenaline, and may be an endogenous hormone involved in larval settlement pathways. I observed the effects of the adrenergic agonist noradrenaline and the adrenergic antagonist phentolamine on larval settlement, and found that high concentrations of noradrenaline increased larval mortality, inhibited larval attachment, and increased larval swimming behavior. High concentrations of phentolamine also increased larval mortality, but increased larval attachment and decreased larval swimming behavior. I used fluorescent labeling and microscopy to localize sensory system components, and found that larvae possess adrenergic-like receptors, as well as tyrosine hydroxylase-like and octopamine-like immunoreactivity. I also exposed larvae to phentolamine in both dark and light conditions, and found that light significantly inhibited larval attachment, but phentolamine blocked those inhibitory effects. These results suggest that B. neritina larvae possess adrenergic-like receptors, which serve as the binding sites for noradrenaline and phentolamine. These are likely octopamine receptors, and octopamine may be one endogenous compound involved in controlling larval phototaxis and settlement behavior. Light may increase octopamine production, thereby stimulating cilial activity, extending swimming behavior, and preventing larvae from attaching to a substrate. This research sheds light on previously unknown sensory mechanisms in B. neritina larvae, and may aid in the development of new biofouling control strategies.
|
7 |
Genetic and environmental interplay during development: Variation at metamorphosis in a natural population of the tropical abalone, Haliotis asinina (Linnaeus)Elizabeth Amy Williams Unknown Date (has links)
Regulation of transcription is an important molecular mechanism through which organisms can respond to environmental change. Environmentally-related transcriptional variation can play a significant role in evolution, potentially acting as a mechanism for the formation of new adaptive phenotypes. Organisms are most sensitive to the influence of external environmental variation during development, yet very few studies have explored environmentally-related transcriptional variation in early life history stages. Marine invertebrate metamorphosis, where intimate larval-environment interactions trigger settlement onto the benthos and a drastic morphological shift from larval to adult form, exemplifies the influence of environment on development. Variation in both the timing of metamorphosis and the form of specific metamorphic inductive cues, even at an intraspecific level, suggests that larvae have molecular mechanisms for surviving settlement and metamorphosis in a range of environmental conditions. The extent of transcriptional variation at metamorphosis remains largely unknown due to limited information on both the natural inductive cues and the molecular mechanisms directing metamorphosis in marine invertebrates. Contributing to current understanding of the interplay between genes, environment and phenotype during development, I explored molecular and ecological aspects of metamorphosis in a marine invertebrate, the tropical abalone Haliotis asinina. First, I employed cDNA microarray methods to identify candidate genes and document widespread transcriptional changes occurring in Haliotis asinina larvae during larval development and metamorphosis. Microarray results reveal that as the abalone veliger larva matures, it requires coordinated regulation of temporally different gene batteries involved in a wide range of physiological and developmental processes associated with the transition to a new, benthic habitat. All candidate genes showed changes in expression following exposure of larvae to coralline algae, an external inductive cue, demonstrating the remarkable effect of environment on transcription during marine invertebrate metamorphosis. 144 genes, ~40% of which are novel, were identified as candidates for a role in H. asinina metamorphosis. This high proportion of novel genes indicates that the conserved signaling pathways operating in marine invertebrate metamorphosis likely regulate the expression of taxon-specific genes. The relationship between abalone larvae and their natural inductive cue, coralline algae, is species-specific. To characterize the metamorphic cue preferences of Haliotis asinina larvae from Heron Island Reef, Australia, I documented larval induction response to a number of different coralline algae species commonly found in adult H. asinina habitat. H. asinina larvae exhibit highly specific responses to induction of metamorphosis by different coralline algae species, with 0 – 100% metamorphosis by 48 hours post induction depending on algae species. Unlike any other abalone species studied, the most effective inducers of Heron Island Reef H. asinina are articulated corallines of the genus Amphiroa. Comparing the response of different larval families to select species of coralline algae indicated that coralline algae community composition is likely to significantly impact H. asinina population structure. Additionally, I compared larval response to dead and live coralline algae to show that induction specificity is driven by chemical, not physical, properties. Characterization of the surface cell biomarkers of three different coralline algae species indicates that algal biomolecular composition relates to variations in H. asinina induction response. To explore the influence of variation in larval induction environment, I compared transcription patterns of 17 metamorphosis-related genes in Haliotis asinina larvae induced by three different species of coralline algae. H. asinina post-induction gene expression profiles vary according to the species of coralline algae inducer. This transcriptional variation occurs in genes with diverse functions and spatial expression patterns, highlighting the global nature of the impact of benthic microhabitat on gene expression. The environment-specific modulation of gene expression in H. asinina post-induction may be a means for marine invertebrates to cope with changes in their settlement environment at metamorphosis. Genes expressed in the larval sensory structures acting to detect external metamorphic cues may be particularly good candidates for studying environmentally-related transcriptional variation. I identified three novel genes expressed in putative sensory structures of Haliotis asinina larvae just prior to metamorphosis. The spatial and temporal expression patterns of these genes correlate with changes in larval ciliation patterns throughout metamorphosis, strongly suggestive of a role in metamorphic initiation. The three genes exhibit significant overlap in spatial expression profiles, indicative of genetic crosstalk between different sensory systems at metamorphosis. Transcriptional variation in gastropod sensory system genes may have assisted the evolution of different metamorphic inductive cues for different species. The results presented here establish an important role for transcriptional variation during marine invertebrate metamorphosis. Transcriptional variation underlies the morphological change from larval to adult body plan and also appears to assist larval recruitment in variable benthic habitats. Modulation of gene expression at metamorphosis in response to the environment may ultimately influence marine invertebrate species biogeography and evolution.
|
Page generated in 0.077 seconds