Spelling suggestions: "subject:"laser absorption"" "subject:"laser bsorption""
31 |
Development and study of microdischarge arrays on silicon / Développement et étude de matrices microdécharge sur siliciumKulsreshath, Mukesh Kumar 21 January 2013 (has links)
L'objectif de cette thèse est de fournir une meilleure compréhension des différents phénomènes physiques liés aux microplasmas/microdécharges. Pour cela, des matrices de microréacteurs sur silicium ont été étudiées. De nombreuses configurations ont été construites de manière à analyser l’influence de chaque paramètre physique sur le fonctionnement de ces dispositifs. Le présent travail porte sur l'élaboration et la caractérisation de dispositifs micro-décharge à base de silicium. Dans ce travail de thèse, les régimes de courant continu (DC) et de courant alternatif (AC) sont étudiés en utilisant des configurations de décharges différentes. Pour la fabrication de ces réacteurs, nous sommes partis de wafers de Silicium que nous avons structurés et traités en salle blanche. La technologie de fabrication utilisée est compatible avec les méthodes de fabrication de dispositifs CMOS. Les microréacteurs sont constitués d’électrodes de nickel et de silicium séparés par une couche diélectrique de SiO2 de 6 μm d’épaisseur. L’épaisseur du diélectrique est ici beaucoup plus faible que celle des microréacteurs étudiés jusqu’à présent. Les dispositifs sont constitués de cavités de 25 à 150 microns de diamètre. Les essais de microdécharge ont été effectués dans des gaz inertes à une pression comprise entre 100 et 1000 Torrs. Nous avons d’abord étudié les phénomènes d’allumage et d’extinction à partir de microdispositifs monocavité en alumine. Puis, nous avons étudié le fonctionnement en DC/AC de microréacteurs en silicium comportant un nombre de cavité compris entre 1 et1024. Les caractéristiques des microdécharges ont été étudiées grâce à des mesures électriques, des mesures de spectroscopie d'émission optique (OES), de spectroscopie d’absorption à diode laser (DLAS) et de spectroscopie d'émission optique résolue en temps (PROES). Ces différents diagnostics nous ont permis de mettre en évidence les phénomènes d’allumage, d’extinction, d’instabilité et les mécanismes de défaillance de nos microdispositifs. Ce travail de thèse a permis de tester les performances et les limites technologiques des matrices de microdécharges sur silicium. Une attention particulière a été portée sur leur durée de vie. / The objective of this thesis is to provide a better understanding of various physical phenomena related to microplasmas/microdischarges. For this purpose, arrays of microreactors on silicon were studied. Different array configurations were fabricated to analyse the influence of each parameter on the physical operation of these devices. The present work focuses on the development and characterisation of micro-discharge devices based on silicon. In this thesis, direct current (DC) and alternating current (AC) regimes are studied using different discharge configurations. For the fabrication of these reactors, Silicon wafers are structured and processed in a cleanroom. Fabrication technology used is compatible with the CMOS technology. The microreactors are fabricated with nickel and silicon electrodes, separated by a dielectric layer of SiO2 with a thickness of 6 μm. The thickness of the dielectric is much lower here than the microreactors studied so far. The devices consist of cavities with 25 to 150 μm in diameter. Experiments of the microdischarges are performed in inert gases at a pressure between 100 and 1000 Torr. We first studied the phenomena of ignition and extinction for the microdevices based on alumina. Then, we studied the microreactors based on silicon containing 1 to 1024 cavities under DC and AC regimes. Characteristics of microdischarges were studied by electrical measurements, measurements of optical emission spectroscopy (OES), laser diode absorption spectroscopy (DLAS) and phase resolved optical emission spectroscopy (PROES). These diagnostics allowed us to investigate the phenomena of ignition, extinction, instability and failure mechanisms of the microplasma devices. This thesis work allowed testing the performance and technological limitations of the silicon based microdischarge arrays. Particular attention was paid to their life time.
|
32 |
銅蒸気レ-ザの下準位原子の基礎過程に関する研究後藤, 俊夫, 岸本, 茂, 河野, 明廣 03 1900 (has links)
科学研究費補助金 研究種目:一般研究(B) 課題番号:05452196 研究代表者:後藤 俊夫 研究期間:1993-1994年度
|
33 |
Development and study of microdischarge arrays on siliconKulsreshath, Mukesh Kumar 21 January 2013 (has links) (PDF)
The objective of this thesis is to provide a better understanding of various physical phenomena related to microplasmas/microdischarges. For this purpose, arrays of microreactors on silicon were studied. Different array configurations were fabricated to analyse the influence of each parameter on the physical operation of these devices. The present work focuses on the development and characterisation of micro-discharge devices based on silicon. In this thesis, direct current (DC) and alternating current (AC) regimes are studied using different discharge configurations. For the fabrication of these reactors, Silicon wafers are structured and processed in a cleanroom. Fabrication technology used is compatible with the CMOS technology. The microreactors are fabricated with nickel and silicon electrodes, separated by a dielectric layer of SiO2 with a thickness of 6 μm. The thickness of the dielectric is much lower here than the microreactors studied so far. The devices consist of cavities with 25 to 150 μm in diameter. Experiments of the microdischarges are performed in inert gases at a pressure between 100 and 1000 Torr. We first studied the phenomena of ignition and extinction for the microdevices based on alumina. Then, we studied the microreactors based on silicon containing 1 to 1024 cavities under DC and AC regimes. Characteristics of microdischarges were studied by electrical measurements, measurements of optical emission spectroscopy (OES), laser diode absorption spectroscopy (DLAS) and phase resolved optical emission spectroscopy (PROES). These diagnostics allowed us to investigate the phenomena of ignition, extinction, instability and failure mechanisms of the microplasma devices. This thesis work allowed testing the performance and technological limitations of the silicon based microdischarge arrays. Particular attention was paid to their life time.
|
34 |
Influence of the Active Screen Plasma Power during Afterglow Nitrocarburizing on the Surface Modification of AISI 316LBöcker, Jan, Puth, Alexander, Dalke, Anke, Röpcke, Jürgen, van Helden, Jean-Pierre, Biermann, Horst 16 April 2024 (has links)
Active screen plasma nitrocarburizing (ASPNC) increases the surface hardness and lifetime of austenitic stainless steel without deteriorating its corrosion resistance. Using an active screen made of carbon opens up new technological possibilities that have not been exploited to date. In this study, the effect of screen power variation without bias application on resulting concentrations of process gas species and surface modification of AISI 316L steel was studied. The concentrations of gas species (e.g., HCN, NH3, CH4, C2H2) were measured as functions of the active screen power and the feed gas composition at constant temperature using in situ infrared laser absorption spectroscopy. At constant precursor gas composition, the decrease in active screen power led to a decrease in both the concentrations of the detected molecules and the diffusion depths of nitrogen and carbon. Depending on the gas mixture, a threshold of the active screen power was found above which no changes in the expanded austenite layer thickness were measured. The use of a heating independent of the screen power offers an additional parameter for optimizing the ASPNC process in addition to changes in the feed gas composition and the bias power. In this way, an advanced process control can be established.
|
Page generated in 0.0772 seconds