• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 34
  • 22
  • 16
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A numerical and experimental investigation of autoignition

Gordon, Robert Lindsay January 2008 (has links)
Doctor of Philosophy(PhD) / This body of research uses numerical and experimental investigative techniques to further the understanding of autoignition. Hydrogen/nitrogen and methane/air fuel configurations of turbulent lifted flames in a vitiated coflow burner are used as model flames for this investigation. Characterisation was undertaken to understand the impact of controlling parameters and the overall behaviour of the flames, and to provide a body of data for modelling comparisons. Modelling of the flames was conducted using the PDF-RANS technique with detailed chemistry incorporated using In-situ Adaptive Tabulation (ISAT) within the commercial CFD package, FLUENT 6.2. From these investigations, two numerical indicators for autoignition were developed: convection-reaction balance in the species transport budget at the mean flame base; and the build-up of ignition precursors prior to key ignition species. These indicators were tested in well defined autoignition and premixed flame cases, and subsequently used with the calculated turbulent lifted flames to identify if these are stabilised through autoignition. Based on learnings from the modelling, a quantitative, high-resolution simultaneous imaging experiment was designed to investigate the correlations of an ignition precursor (formaldehyde: CH2O) with a key flame radical (OH) and temperature. Rayleigh scattering was used to measure temperature, while Laser Induced Fluorescence (LIF) was used to measure OH and CH2O concentrations. The high resolution in the Rayleigh imaging permitted the extraction of temperature gradient data, and the product of the OH and CH2O images was shown to be a valid and useful proxy for peak heat release rate in autoigniting and transient flames. The experimental data confirmed the presence of formaldehyde as a precursor for autoignition in methane flames and led to the identification of other indicators. Sequenced images of CH2O, OH and temperature show clearly that formaldehyde exists before OH and peaks when autoignition occurs, as confirmed by images of heat release. The CH2O peaks decrease later while those of OH remain almost unchanged in the reaction zone.
42

A numerical and experimental investigation of autoignition

Gordon, Robert Lindsay January 2008 (has links)
Doctor of Philosophy(PhD) / This body of research uses numerical and experimental investigative techniques to further the understanding of autoignition. Hydrogen/nitrogen and methane/air fuel configurations of turbulent lifted flames in a vitiated coflow burner are used as model flames for this investigation. Characterisation was undertaken to understand the impact of controlling parameters and the overall behaviour of the flames, and to provide a body of data for modelling comparisons. Modelling of the flames was conducted using the PDF-RANS technique with detailed chemistry incorporated using In-situ Adaptive Tabulation (ISAT) within the commercial CFD package, FLUENT 6.2. From these investigations, two numerical indicators for autoignition were developed: convection-reaction balance in the species transport budget at the mean flame base; and the build-up of ignition precursors prior to key ignition species. These indicators were tested in well defined autoignition and premixed flame cases, and subsequently used with the calculated turbulent lifted flames to identify if these are stabilised through autoignition. Based on learnings from the modelling, a quantitative, high-resolution simultaneous imaging experiment was designed to investigate the correlations of an ignition precursor (formaldehyde: CH2O) with a key flame radical (OH) and temperature. Rayleigh scattering was used to measure temperature, while Laser Induced Fluorescence (LIF) was used to measure OH and CH2O concentrations. The high resolution in the Rayleigh imaging permitted the extraction of temperature gradient data, and the product of the OH and CH2O images was shown to be a valid and useful proxy for peak heat release rate in autoigniting and transient flames. The experimental data confirmed the presence of formaldehyde as a precursor for autoignition in methane flames and led to the identification of other indicators. Sequenced images of CH2O, OH and temperature show clearly that formaldehyde exists before OH and peaks when autoignition occurs, as confirmed by images of heat release. The CH2O peaks decrease later while those of OH remain almost unchanged in the reaction zone.
43

Advancements and Practical Applications of Molecular Tagging Velocimetry in Hypersonic Flows

Jordan Matthew Fisher (9515840) 16 December 2020 (has links)
<div>Hypersonic flows consist of harsh environments where chemistry effects are relevant and low speed assumptions such as the ideal gas law and the continuum hypothesis</div><div>begin to break down. Because of these processes, computer models do a poor job of predicting behavior of vehicles in hypersonic flight. High fi?delity ground test</div><div>measurements are necessary to anchor and extrapolate CFD simulations so that flight vehicle designs can continue to improve. Due to the harsh conditions and complexities</div><div>of test facilities, implementing experimental measurements can prove challenging. Molecular tagging methods such as Femtosecond Laser Electronic Excitation Tagging</div><div>(FLEET) are attractive for use in hypersonic ground test facilities for many reasons. They are generally considered non-intrusive, since they require no physical probes or seed particles to be placed in the flow. This both keeps the facility safe from damage and minimizes the disturbance imparted on the flowfi?eld by the measurement. Since the tracer is comprised of molecules already present in the flow, the measurement is reliable and can track velocities over a wide dynamic range. The optical arrangement for FLEET is rather simple, requiring only a focused laser beam and a camera to capture the signal. The method can even be applied as a one-sided measurement requiring only one direction of optical access. The current state-of-the-art for the FLEET method is point-wise measurements made at 1 kHz with a</div><div>commercially available laser system. The basis for this thesis is to identify and address current limitations in the implementation of FLEET to relevant flow facilities in terms of the useful aerodynamic information that can be extracted. Fundamental advances to the spatial extent and temporal resolution of FLEET are investigated, and novel applied measurements in high speed flow facilities are presented. Considerations of the precision, spatial resolution and ability to implement fundamental advances to harsh and more complex environments are discussed. A custom-built burst-mode femtosecond laser system is used to enable FLEET measurements at 1 MHz, an improvement of three orders</div><div>of magnitude in measurement rate. New optical arrangements including microlens arrays and holographic beamsplitters are developed to allow multi-dimensional grids</div><div>to be tracked to instantaneously measure velocity gradients. Shock wave and shear measurements in a supersonic bladeless turbine and boundary layer measurements</div><div>on a Mach 6 cone-cylinder-flare are demonstrated. Additionally, an adapted method, Femtosecond Laser Activation and Sensing of Hydroxyl (FLASH) is developed and applied to measure velocity in reacting environments such as a Rotating Detonation Engine (RDE). These innovations provide a path forward for improving the spatiotemproal fi?delity of velocity measurements and extending the capability for investigation high-speed reacting and non-reacting flows in hypersonic ground test facilities.</div><div><br></div>
44

EXTENSION OF HYBRID FEMTOSECOND/PICOSECOND COHERENT ANTI-STOKES RAMAN SCATTERING TO HIGH-SPEED FLOWS

Erik Luders Braun (14221646) 06 December 2022 (has links)
<p> </p> <p>High-speed flows are important for defense, national security, and transportation applications and generate harsh environments where simplifying assumptions such as the ideal gas law are not valid due to nonequilibrium and chemistry effects. These flows are difficult and expensive to replicate experimentally, so the development and improvement of high-speed vehicles often relies on high-fidelity computational fluid dynamics (CFD) models. The successful modeling of complicated phenomena, such as heat transfer in a turbulent boundary layer, relies on validation by experimental data taken with high spatiotemporal resolution, precision, and accuracy. Precise experimental measurement of temperature, an important thermodynamic property for CFD models, is difficult with physical probes which are typically slow and perturb the flow. Instead, hybrid femtosecond/picosecond (fs/ps) coherent anti-Stokes Raman scattering (CARS) allows for non-intrusive, spatially-resolved, collision-free thermometry at kHz repetition rates with high precision and accuracy. </p> <p>The goal of this thesis is to advance hybrid fs/ps CARS for extension to high-speed flows, with particular improvements to the spatial extent, probe characteristics, and precision of the technique. A novel method for multipoint measurements in a simple and effective optical arrangement is demonstrated, enabling single-shot and averaged measurements of temperature and O<sub>2</sub>/N<sub>2</sub> concentration along a linear array of probe volumes. The generation of a variable-pulsewidth probe beam by a ps slicer, electro-optic modulator, fiber amplifier, and custom narrowband amplifier system is used for improved signal-to-noise ratios at low pressure. Simultaneous CARS thermometry and femtosecond laser electronic excitation tagging (FLEET) velocimetry are performed in the freestream of Mach 3 and Mach 4 nitrogen flows. These measurements reveal the need to quantify and establish the ultimate precision of the hybrid fs/ps CARS technique. Sources of uncertainty in hybrid fs/ps CARS thermometry are determined through a theoretical uncertainty analysis and the predicted precision of the technique is confirmed experimentally in room temperature nitrogen. Benchtop measurements in a supersonic nozzle are used to indicate spatial and temporal simultaneity between FLEET and CARS measurements and hybrid fs/ps CARS thermometry is performed in a high-speed, low temperature flow.</p>
45

Laser Diagnostics of Reacting Molecular Plasmas for Plasma Assisted Combustion Applications

Winters, Caroline January 2017 (has links)
No description available.
46

Formation des oxydes d'azote dans les flammes haute pression : étude expérimentale par fluorescence induite par laser : application aux flammes méthane/air et méthane/hydrogène/air / Nitric oxide formation in high pressure flames : experimental study by laser induced fluorescence : application to methane/air and methane/hydrogen/air flames

Molet, Julien 24 January 2014 (has links)
Le monoxyde d’azote (NO) est un polluant atmosphérique responsable d’effets nuisibles sur l’environnement et la santé. Afin de mieux contrôler ces émissions, il est indispensable de comprendre et de maîtriser leur formation,en particulier lors de la combustion à haute pression, domaine d’application industrielle (cas des turbines à gaz,des moteurs…). On distingue quatre voies principales de formation de NO : la voie thermique, la voie du NO précoce, la voie NNH et la voie N2O. L’objectif de cette thèse à caractère expérimentale est de compléter la base de données expérimentale déjà existante nécessaire à la compréhension et à l’identification de la contribution de chaque voie à la formation du NO à haute pression.Dans cette thèse, un dispositif de brûleurs à contre-courants a été utilisé pour étudier la structure de flammes laminaires, prémélangées à haute pression. Les profils de concentration de NO dans les flammes CH4/O2/N2 à différentes richesses (Фc =0,7-1,2) et différentes pressions (P=0,1-0,7 MPa) ont été mesurés par Fluorescence Induite par Laser. L’effet de l’ajout d’hydrogène (80%CH4/20%H2 : Application Hythane®) sur la formation de NO a également été étudié dans les flammes pauvres CH4/O2/N2. Le mécanisme cinétique GDF-Kin®3.0_NCN a été comparé aux mesures de NO disponibles dans la littérature ainsi qu’aux simulations des mécanismes cinétiques du Gaz Research Institute (version 2.11 et 3.0). Ces trois mécanismes ont été ensuite comparés aux mesures expérimentales réalisées dans ces travaux de thèse. / The nitric oxide (NO) is a pollutant responsible of detrimental effects on the environment and health. To better control these emissions, it’s crucial to understand and to control their formation, in particular during the combustion process at high pressure, area of industrial applications (gas turbines, engines…).There are four major routes of the NO formation: the thermal route, the prompt-NO route, the NNH route and theN2O route. The aim of this experimental thesis is to complete the existing experimental database which isnecessary to the understanding and the identification of the contribution from each route to the NO formation at high pressure.In this thesis, a facility of two twin counter-flow burners was used to study the structure of the laminar, premixed flames at high pressure. Experimental NO concentration profiles have been measured in CH4/O2/N2 flames for arange of equivalence ratio (from 0.7 to 1.2) and pressures (from 0.1 to 0.7 MPa) by Laser Induced Fluorescence.The effect of adding hydrogen (80%CH4/20%H2: Hythane® application) on the NO formation has been also studied in lean CH4/O2/N2 flames. The GDF-Kin®3.0_NCN kinetic mechanism has been compared to experimental data from the literature and also compared to the simulations from the Gas Research Institute mechanisms (version 2.11 and 3.0). These three mechanisms have been finally compared to the experimental data from this thesis.
47

Study of multi-component fuel premixed combustion using direct numerical simulation

Nikolaou, Zacharias M. January 2014 (has links)
Fossil fuel reserves are projected to be decreasing, and emission regulations are becoming more stringent due to increasing atmospheric pollution. Alternative fuels for power generation in industrial gas turbines are thus required able to meet the above demands. Examples of such fuels are synthetic gas, blast furnace gas and coke oven gas. A common characteristic of these fuels is that they are multi-component fuels, whose composition varies greatly depending on their production process. This implies that their combustion characteristics will also vary significantly. Thus, accurate and yet flexible enough combustion sub-models are required for such fuels, which are used during the design stage, to ensure optimum performance during practical operating conditions. Most combustion sub-model development and validation is based on Direct Numerical Simulation (DNS) studies. DNS however is computationally expensive. This, has so far limited DNS to single-component fuels such as methane and hydrogen. Furthermore, the majority of DNS conducted to date used one-step chemistry in 3D, and skeletal chemistry in 2D only. The need for 3D DNS using skeletal chemistry is thus apparent. In this study, an accurate reduced chemical mechanism suitable for multi-component fuel-air combustion is developed from a skeletal mechanism. Three-dimensional DNS of a freely propagating turbulent premixed flame is then conducted using both mechanisms to shed some light into the flame structure and turbulence-scalar interaction of such multi-component fuel flames. It is found that for the multi-component fuel flame heat is released over a wider temperature range contrary to a methane flame. This, results from the presence of individual species reactions zones which do not all overlap. The performance of the reduced mechanism is also validated using the DNS data. Results suggest it to be a good substitute of the skeletal mechanism, resulting in significant time and memory savings. The flame markers commonly used to visualize heat release rate in laser diagnostics are found to be inadequate for the multi-component fuel flame, and alternative markers are proposed. Finally, some popular mean reaction rate closures are tested for the multi-component fuel flame. Significant differences are observed between the models’ performance at the highest turbulence level considered in this study. These arise from the chemical complexity of the fuel, and further parametric studies using skeletal chemistry DNS would be useful for the refinement of the models.
48

Measurements of the structure of turbulent premixed and stratified methane/air flames

Sweeney, Mark January 2011 (has links)
The influence of stratification on the structure of turbulent methane/air combustion is investigated using experimental data from laboratory scale burners: a weakly turbulent slot burner, and a higher turbulence co-annular swirl burner. The degree of stratification can be controlled independently of the overall fuel/air flow rate. The resulting measurements of scalar and velocity fields provide detailed test cases for existing and emerging turbulent flame models, covering a range of u'/sL from 1 to 10, turbulence intensities from 5% to 60%, and stratification ratios from 1 to 3. Simultaneous Rayleigh/Raman/CO-LIF measurements of temperature and major species concentrations - CH4, CO2, CO, H2, H2O and O2 - along a line are used to investigate the structure of a series of flames in both the slot and swirl burners. Concurrent cross-planar OH-PLIF allows thermal gradients to be angle corrected to their three-dimensional values. Finally, non-reacting and reacting velocity fields complete the flame database. The behavior of major species concentrations in the slot and swirl burner with respect to temperature is found to agree well on the mean with unstrained premixed laminar flame calculations. Scalar means conditioned on stoichiometry also show good agreement, aside from hydrogen which is enhanced under stratified conditions. Surface density function and scalar dissipation are lower than calculated values in all cases, suggesting that turbulence-induced thickening dominates the effect of increased strain. Metrics commonly used to derive flame surface density (FSD) were investigated. FSD may be determined using a statistical method based on measurements of temperature and its gradient, or a geometric method based on 2D temperature or LIF imaging. A third metric, an extension of the geometric method, is proposed. Good agreement is observed between the three metrics. The current database provides the first detailed high resolution scalar measurements for premixed and stratified flames. The data analysis provides insight into the physics of stratification: for the flames considered, the effects of stratification appear to be surprisingly small compared to those of turbulence, even at significant stratification ratios. The datasets provide a means of validating current and future computational turbulent combustion models.
49

Laser Diagnostics for Kinetic Studies of Nonequilibrium Molecular Plasmas and High-Speed Flows

Jans, Elijah R. 08 October 2021 (has links)
No description available.
50

Thermographie et mesures de concentrations multi-espèces par diffusion Raman spontanée pour la combustion turbulente / Thermography and multi-species concentrations measurements by spontaneous Raman scattering for turbulent combustion

Ajrouche, Hassan 08 July 2016 (has links)
Les diagnostics lasers ont prouvé leur potentiel pour l'analyse des écoulements et des phénomènes de combustion par la mesure de champs de vitesses, de concentration d'espèces et de température. La diffusion Raman spontanée (DRS) est une des rares méthodes permettant de mesurer la température et la concentration de manière in-situ avec la possibilité de sonder plusieurs espèces simultanément. L'analyse des flammes turbulentes par DRS est difficile en raison de la nécessité de mesures mono-coup avec de fortes résolutions spatiales et temporelles et de la présence de lumière parasite. L'originalité de notre nouveau dispositif de mesure réside dans l'utilisation d'un obturateur électro-optique à base de cellule de Pockels (OCP), permettant d'éliminer les lumières non polarisées de fond de flamme, compatible avec une mesure 1D. Une réduction significative de l'émission de flamme et une amélioration du rapport signal sur bruit des espèces Raman actives ont été obtenues. La capacité de la DRS en tant que méthode de thermométrie mono-coup a été testée avec succès dans le cas d'une flamme de prémélange et de diffusion laminaire fuligineuse. L'écart relatif entre les températures moyennes mesurées dans les gaz brûlés et celles données par la modélisation de flamme est inférieur à 1 %. L'analyse de la thermométrie Raman à basse température a montré qu'une meilleure précision était obtenue avec la modélisation de 02 comparée à celle N2. Par la suite, le potentiel de la DRS à fournir des mesures simultanées de concentrations instantanées de N2, 02 et CO dans les flammes a été validé. Une évaluation des performances de différents détecteurs CCD accompagnés de l'OCP a également été réalisée. Les résultats obtenus avec la BI-CCD et la BI-EMCCD pour la température, le gradient de température et la forte densité sont en bon accord avec les calculs laminaires 1D de flamme adiabatique fournis par COSILAB. La BI-EMCCD a montré qu'elle est le détecteur le plus sensible pour la détection des espèces à faibles concentrations comme le CO. Enfin, des mesures par DRS ont été obtenues dans une flamme-jet de diffusion turbulente, en présence des suies illustrant le potentiel de cette technique pour construire une base de données importante pour la modélisation numérique des flammes / Laser diagnostics have been proven to be an indispensable tool to analyze the flow and combustion phenomena by allowing non-intrusive measurements of the velocity field, concentration and temperature. Spontaneous Raman Scattering (SRS) is one of the few methods providing simultaneously in-situ temperature and multi-species concentrations. Measurement in turbulent flames by SRS is still challenging due to the emission background and the requirement of single-shot measurements with high spatial and temporal resolutions. The originality of the present approach consists in use of a large aperture Pockels cell based electro-optical shutter (PCS), that allows removing unpolarised background flame emission and compatible with a 1D measurement. A significant reduction of flame emission was observed and consequently signal to noise ratio was enhanced. The ability of SRS in terms of thermometric single-shot method was demonstrated successfully in premixed laminar flames and sooty laminar diffusion flames. The measured temperature in burnt gases and those calculated by adiabatic flame modelling was within 1 %. Thermometric Raman analysis for low temperatures demonstrates the reliability of measurements, with a better accuracy for 02 compared to N2. Subsequently, the ability of SRS technique to simultaneously measure instantaneous concentrations of N2, 02 and CO was demonstrated. The ability to measure single-shot scalar values accurately is assessed by comparing different CCD detectors with the PCS. The results obtained from the BI-CCD and the BI-EMCCD concerning temperature, temperature gradient and high density were in good agreement with the COSILAB calculation for 1D laminar adiabatic flame. The BI-EMCCD observed to be the most sensitive in detecting low concentration elements like CO. Finally, SRS technique was applied to a turbulent sooting jet flame, illustrating the potentiel of this technique to build an important database for flame modelling

Page generated in 0.0802 seconds