Spelling suggestions: "subject:"laser machining"" "subject:"laser amachining""
1 |
Monitoring Material Modification using Inline Coherent ImagingLeung, Ben 03 November 2010 (has links)
Laser machining is a commonly used method for materials processing. Focusing laser energy onto a sample can lead to material modifications and achieve feature sizes on the order of micrometres. However, designing a machining platform capable of producing high quality, repeatable, and accurate results is a key challenge because the final outcome can be variable, even when using fixed laser parameters. Therefore, in order to understand and monitor the process, real-time in situ metrology is required.
In this work, a coherent imaging technique analogous to spectral domain optical coherence tomography (SD-OCT) was applied inline with a machining laser in order to monitor the cut development of various materials for industrial and biomedical applications. Such inline coherent imaging (ICI) provides axial resolution on the order of ones to tens of micrometers as well as temporal resolution on the order of microseconds.
In stainless steel, the machining front was observed to have very different responses to pulsed lasers operating in different ablation regimes. Applying shorter pulse duration with higher peak intensity led to more deterministic material removal with little relaxation between pulses, while longer pulses revealed periodic melting and refilling behaviour. In addition, improvement of depth sensitivity to nanometre scales was explored by accessing phase information for Doppler processing techniques.
For poorly absorbing materials, ICI provides the ability to observe structures below the surface. This is a very important characteristic for biomedical applications, such as guiding ablation in biological tissue. By monitoring the ablation of bone tissue in real-time using ICI, the operator was able to terminate exposure from the machining laser 50 μm before perforation into a natural inclusion in the tissue. ICI was able to anticipate the inclusion 176 ± 8 μm below the ablation front with signal intensity 9 ± 2 dB above the noise floor. With added real-time depth control, many applications will benefit whether it is achieving higher precision cuts in industrial materials, or limiting the possibility of damaging organs at risk below the cutting surface in surgical intervention. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2010-10-29 16:01:38.048
|
2 |
Characterization of Femtosecond Laser Machining on Dielectric MaterialsBudiman, Mariana 08 1900 (has links)
This thesis presents the investigations of femtosecond laser machining on
three different dielectric materials, namely quartz, sapphire and diamond. The
laser micromachining experiments were performed with a Titanium:Sapphire
solid state laser with a repetition rate of 1 kHz, centered at a wavelength of
800 nm and pulse duration of 150-200 femtoseconds (fs). A 5x microscope
objective for surface micromachining and a 50x microscope objective for subsurface micromachining. The 50x microscope objective was used to obtain a smaller spot size and a shorter confocal parameter. The purpose of this research was to study the interaction between the femtosecond laser pulses and quartz, sapphire and diamond which have bandgap energies of 8.4 eV (λ=148 nm), 9.9 eV (125 nm), and c)· diamond 5.5 eV (225 nm) respectively. Since the photon energy of the laser was below the wide bandgap energies of the aforementioned dielectrics, the materials were essentially transparent to the incident laser. In order to study the behavior of the dielectric materials under femtosecond laser irradiation, several experiments with varying type and number of pulses (N) were performed, such as single pulse ablation, plural pulse ablation (N ≤ 100 pulses), multiple pulse ablation (N ≤ 100 pulses), and continuous lines micromachining on the surface and in the sub-surface of materials were performed. The features, damage, and structural changes introduced by femtosecond laser irradiation on the materials studied were characterized through examination of both the plan and cross-section views. The characterization process was carried out using optical microscopy (operated in the Nomarski mode), scanning electron microscopy, focused ion beam, atomic force microscopy, and transmission electron microscopy. The laser micromachining demonstrated distinct behaviors of the three wide bandgap materials. Quartz was very prone to cracking and showed nearwavelength alternating crystalline and amorphous sub-structure with the orientation parallel with respect to the electric field direction. Sapphire showed sub-wavelength ripples formation in lower fluences. Finally, diamond showed a strong tendency for ripples formation from near- to sub-wavelength spacing with the orientation of the ripples perpendicular and parallel with respect to electric field polarization. / Thesis / Master of Applied Science (MASc)
|
3 |
Characterization and improvement of copper/glass adhesionHe, Baofeng January 2012 (has links)
The development of glass substrates for use as an alternative to printed circuit boards (PCBs) attracts significant industrial attention, because of the potential for low cost but high performance interconnects and optical connection. Electroless plating is currently used to deposit conductive tracks on glass substrates and the quality of copper / glass adhesion is a key functional issue. Without adequate adhesive strength the copper plating will prematurely fail. Existing studies have covered the relationship between surface roughness and adhesion performance, but few of them have considered the detail of surface topography in any depth. This research is specifically considering the mechanical contribution of the glass surface texture to the copper / glass adhesive bond, and attempting to isolate new ISO 25178 areal surface texture parameters that can describe these surfaces. Excimer laser machining has been developed and used to create a range of micro pattern structured surfaces on CMG glass substrates. Excimer mask dimensions and laser operation parameters have been varied and optimized according to surface topography and adhesion performance of the samples. Non-contact surface measurement equipment (Zygo NewView 5000 coherence scanning interferometry) has been utilized to measure and parameterize (ISO 25178) the surface texture of the glass substrates before electroless copper metallization. Copper adhesion quality has been tested using quantitative scratch testing techniques, providing an identification of the critical load of failure for different plated substrates. This research is establishing the statistical quality of correlation between the critical load values and the associated areal parameters. In this thesis, the optimal laser processing parameter settings for CMG glass substrate machining and the topographic images of structured surfaces for achieving strong copper / glass plating adhesion are identified. The experimental relationships between critical load and areal surface parameters, as well as the discussions of a theoretical approach are presented. It is more significant to consider Sq, Sdq, Sdr, Sxp, Vv, Vmc and Vvc to describe glass substrate surface topography and the recommended data value ranges for each parameter have been identified to predict copper / plating adhesion performance.
|
4 |
High Performance Digitally Manufactured Microwave and Millimeter-Wave Circuits and AntennasRojas, Eduardo A. 23 June 2017 (has links)
The potential of Additive Manufacturing (AM) for microwave and mm-wave applications is increasingly being revealed thanks to recent advancements in research. AM empowers engineers with new capabilities to manufacture complex conformal geometries quicker and at lower costs. It allows, for instance, the embedding of RF front ends into functional structures. In this dissertation, two aspects of AM are explored: (a) The development and characterization of techniques that improve the performance of AM microwave circuits and antennas, and (b) study of complex geometries, such as meshed structures, as an alternative to reduce material usage, cost, and weight of the components.
Micro-dispensing of silver paste (CB028) is extensively used in this work as a viable approach for manufacturing microwave planar transmission lines. However, the performance and upper-frequency range of these lines are limited by the cross-sectional shape and electrical conductivity of the printed paste, as well as the achievable minimum feature size which is typically around 100 μm. In this work a picosecond Nd:YAG laser is used to machine slots in a 20-25 μm-thick layer of silver paste (Dupont CB028) that is micro-dispensed on a Rogers RT5870 substrate, producing coplanar waveguide transmission lines with 16-20 μm-wide slots. It is shown that the laser solidifies 2 μm wide region along the edges of the slots, thus significantly increasing the effective conductivity of the film and improving the attenuation constant of the lines. The extracted attenuation constant at 20 GHz for laser machined CB028 is 0.74 dB/cm. CPW resonators and filters show that the effective conductivity is in the range from 10 MS/m to 30 MS/m, which represents a 100x improvement when compared to the values obtained with the exclusive use of micro-dispensing.
Another main aspect of this dissertation is the study of meshed structures in coplanar waveguides. For most AM processes the materials utilized for the conductive layer are the most expensive ones; hence, there is value in minimizing the conductor surface area used in a circuit. In this work, the approach of meshed ground coplanar waveguide (MGCPW) is analyzed by simulating, fabricating and measuring a broad set of meshed ground geometry sizes. Furthermore, a physical-mathematical model is presented, which predicts the characteristic impedance and the capacitance per unit length of MGCPW with less than 5.4% error compared to simulated data. A set of filters is designed and fabricated in order to demonstrate the approach. The main parameter affected by meshing the ground plane is the attenuation constant of the waveguide. It is shown that 50% mesh density in the ground plane of a MGCPW line can be used with less than 25% increase in the loss. In contrast, the loss of finite ground coplanar waveguide (FGCPW) can increase by as much as 108% when the ground size is reduced by the same factor (50%). Both 3D printing (micro-dispensing) and traditional printed circuit board manufacturing are used in this work, and most of the propagation characterization is performed at 4 GHz.
A meshing technique is also applied to rectangular waveguides, and its effects are studied. It is presented as an option for high power, low loss, but also reduced weight applications. A set of meshed Ku-band waveguides was fabricated using binder jetting 3D printing technology showing that the weight can be reduced by 22% with an increase in loss of only 5%, from 0.019 dB/cm for the solid part to 0.020 dB/cm average across the band with the meshed design. Further weight reduction is possible if higher loss is allowed. To demonstrate the concept, a comparison is made between non-meshed and meshed waveguide 4 pole Chebyshev filters.
Finally, the BJ technology is characterized for Ku-Band rectangular waveguide and reflector antenna applications. This technology is characterized using electron beam microscopy (SEM) and energy dispersive spectroscopy (EDS). The RF performance of the 3D printed circuits is benchmarked with Ka-band cavity resonators, waveguide sections, and a filter. An unloaded resonator Q of 616 is achieved, and the average attenuation of the WR-28 waveguide section is 4.3 dB/m. The BJ technology is tested with a meshed parabolic reflector antenna, where the illuminating horn, waveguide feed, and a filter are printed in a single piece. The antenna shows a peak gain of 24.56 dBi at 35 GHz.
|
5 |
Inline Coherent Imaging Applied to Laser MicromachiningJi, YANG 30 April 2014 (has links)
Laser processing has the advantage of minimal sample contact and thus little tool wear over time compared to conventional machining. However, this leads to the difficulty of real-time depth monitoring and control. To help understand the process and achieve automation of laser micromachining, a coherent imaging technique adapted from spectral domain optical coherence tomography (SD-OCT) is applied “inline”with a machining laser to monitor the depth changing information. The axial resolution of the inline coherent imaging (ICI) system is 7–8 microns and the acquisition rate is up to 230 kHz. The capture time is as low as 1.5 microseconds.
3D laser machining usually requires ultrafast lasers and homogeneous materials. With ICI, a feedback system is developed for 3D sculpture suitable even for heterogeneous materials without any sophisticated material characterization. 3D patterns with sizes up to 1 mm × 1 mm × 0.2 mm are sculpted in bone and wood with a ps UV laser. 3D patterns with sizes up to 6 mm × 6 mm × 2 mm are sculpted in bone with a CW IR laser.
Many laser applications require high scan speed facilitated by scanning optics. The versatility of ICI is also demonstrated in a galvo-telecentric beam delivery system. ICI is used in a process of trench (as long as 10 mm) etching of steel to monitor the intrapulse and interpulse morphology changes as well as the sweep-to-sweep (up to 36 sweeps) depth changes. High scan speed (up to 375 mm/s) trench etching of silicon are also monitored and the parameter space is explored without destructive post-processing.
Motion during imaging capture time (>1.5 microseconds) may cause contrast degradation. To reduce the motion artifacts, preliminary experiments on stroboscopic ICI based on a kHz pulse repetition rate femtosecond laser are described. By “sampling” the motion of the machining front discretely with a “sampling time” as short as the imaging pulse duration, our results demonstrate that stroboscopic ICI is a promising way to improve the ICI contrast against motion artifacts. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2014-04-30 13:56:35.793
|
6 |
Hybrid microfluidic devices based on polymeric materials functionalized for cell biology applicationsSantaniello, Tommaso January 2014 (has links)
The present thesis work deals with the development of a novel manufacturing protocol for the realization of excimer laser micro-patterned freestanding hydrogel layers (50 to 300 ??m thickness) based on thermo-responsive poly-(N-isopropyl)acrylamide (PNIPAAm) which can operate as temperature-triggered actuators for cells-on-chip applications. PNIPAAm based thin films were synthesized in house and manufactured by an injection/compression moulding based technique in order to obtain flat hydrogels attached to rigid polyvinyl chloride (PVC) substrates to facilitate laser focusing. Laser machining parameters were empirically optimized to fabricate arrays of through-holes with entrance diameter ranging from 30 ??m to 150 ??m and having different exit diameter (from 10 to 20 ??m) on the PNIPAAm employing a stencil aluminum mask. After laser processing, the microstructured layers were detached from the PVC using a chemical treatment and then left to swoll in pure water. The KrF excimer laser machined through-holes could be reversibly modulated in terms of size as a consequence of the polymer volumetric phase transition induced by a temperature change above the critical value of 32 ??C. Thermo-responsiveness characterization was carried out on the detached water swollen freestanding layers using a thermostat bath, by changing the temperature from 18 ??C to 39 ??C and each sample could undergo multiple cycles. As a result of the polymer water loss, the shrinkage of the layer caused the holes to shrink homogeneously, thus reducing their original size of about the 50% in the polymer collapsed state. To prove the functionality of these stimuli-responsive smart surfaces in the frame of cells-on-chip systems, they were integrated in a multilayer microfluidic device to operate as self-regulating cell sorting actuators for single cell assays applications. Using mechanical fastening as the packaging strategy, the hydrated hydrogel was sealed between two micro-milled poly-methyl methacrylate (PMMA) components, which provided the fluid accesses and ducts to the cell suspension to be flown over the thermoresponsive actuator (top layer) and the well to collect the sorted sample (bottom layer). The device is also equipped with a thin transparent heater to control the microfluidic chip temperature. When the system is assembled, the temperature-triggered actuation mechanism was exploited to trap a cellular sample in the shrunken exit hole on the top of the hydrogel layer by applying a negative pressure across the film via the bottom PMMA component when the system is kept at 37 ??C. Subsequently, the sorting of the trapped cell took place through the micro-capillary when the polymer natural relaxation at room temperature towards its initial state occurred; the operational principle of the device was proved using MG63 cells as a model cell line by monitoring the sorting through the size-modulating structures using optical microscopy.
|
7 |
Estudo da síntese de nanopartículas de NaYF4:Yb:Er a partir de circuito microfluídico projetado no IPEN / Study of NaYF4:Yb:Er nanoparticles synthesis through microfluidic systems fabricated at IPENSilva, Tayná de Fatima Amorim da 11 December 2018 (has links)
Este trabalho apresenta a síntese de nanopartículas (NPs) de NaYF4 dopadas com íons terras raras a partir de sistemas microfluídicos projetados e desenvolvidos em parceria entre o Laboratório de Crescimento de Cristais e a Central de Processamento de Materiais a Laser no Centro de Laser e Aplicações IPEN. O objetivo foi o estudo de diferentes circuitos microfluídicos usinados a laser para síntese de NPs de fluoretos em geral. Como material teste foi escolhido o NaYF4:Yb3+:Er3+, visando sua obtenção na fase hexagonal com dimensões definidas. Experiências de síntese deste material por co-precipitação, sem uso de surfactantes, foram realizadas para comparação com as sínteses obtidas via microfluídica. Por co-precipitação foram obtidas partículas esféricas, na fase cubica do NaYF4. Foram projetados e fabricados, via usinagem a laser de pulsos ultracurtos em substrato de vidro ótico BK7, três circuitos microfluídicos. Nas experiências de sínteses realizadas nestes chips foram obtidas NPs de NaYF4:Yb3+:Er3+ tanto na fase cubica quanto na fase hexagonal, em diferentes proporções, dependendo dos fluxos de injeção dos precursores no micro reator, da temperatura e da taxa de residência. As NPs obtidas neste trabalho foram caracterizadas através de DRX e analise pelo método de Rietveld, para a identificação das fases do material, MET para definição de forma e tamanho da nanopartículas e MEV para estudo dos microcanais dos chips usinados a lasers. Os melhores resultados foram observados em chips com microcanais da ordem de 400-600μm, pois minimizam o problema de obstrução. Contudo, o controle da temperatura precisa ser otimizado para evitar trincas nos microcircuitos. As NPs obtidas via microfluídica apresentaram distribuição de tamanho na faixa de 5 a 200nm e fases com estrutura hexagonal e cubica. Foi possível obter NPs de fase única cubica, mas o mesmo não ocorreu para fase hexagonal do NaYF4. O presente estudo permitiu definir vários fatores para a obtenção das NPs de NaYF4 via microfluídica e também referente a fabricação, montagem e uso dos chips, porém para obter NPs desse material com controle da dimensão e fases serão necessários estudos complementares. / This work presents the synthesis of NaYF4 nanoparticles (NPs), doped with rare earth ions, using microfluidic systems designed and fabricated at IPEN through Crystal Growth Lab and Materials Laser Processing Lab partnership. The aim of this work was the study of different microfluidic chips laser machined for use in fluoride NPs synthesis. The compound NaYF4:Yb3+:Er3+ (Yb 10 mole%; Er 0.5 mole %) was chosen to test the fabricated microfluidic chips aiming the production of NPs with hexagonal structure with defined dimensions. Synthesis experiments by co-precipitation method of this material without any surfactant were performed to compare with microfluidics synthesis. By this method spherical particles, were obtained with the cubic NaYF4 crystalline structure. Three different chips were designed and fabricated, using a femtosecond laser to machine BK7 optical glass substrate. The synthesis experiments with these chips resulted in NaYF4:Yb3+:Er3+ NPs with both cubic and hexagonal crystalline structure, in different proportions, depending of precursors flux rates, temperature and resident time. The obtained materials of all experiments were characterized by X-ray diffraction and Rietveld analysis, to define crystalline structures parameters; transmission microscopy to define shape and size of NPs and scanning electron microscopy to characterize the chips micro channels machined by laser. The best results were observed for chips with channels of 400-600μm, in view of the obstruction decrease in the chips. The NPs obtained with microfluidics presented sizes from 5nm up to 200nm and hexagonal and cubic crystallographic structures. Cubic single phase NPs were obtained, but the same did not happened with the NaYF4 hexagonal phase. The present study allowed establishing many different parameters for NaYF4 NPs synthesis through microfluidics and concerning fabrication, assembly and experimental use of microfluidic chips, however, additional experiments will be necessary to obtain the fluoride NPs with controlled size and shape.
|
8 |
Estudo da síntese de nanopartículas de NaYF4:Yb:Er a partir de circuito microfluídico projetado no IPEN / Study of NaYF4:Yb:Er nanoparticles synthesis through microfluidic systems fabricated at IPENTayná de Fatima Amorim da Silva 11 December 2018 (has links)
Este trabalho apresenta a síntese de nanopartículas (NPs) de NaYF4 dopadas com íons terras raras a partir de sistemas microfluídicos projetados e desenvolvidos em parceria entre o Laboratório de Crescimento de Cristais e a Central de Processamento de Materiais a Laser no Centro de Laser e Aplicações IPEN. O objetivo foi o estudo de diferentes circuitos microfluídicos usinados a laser para síntese de NPs de fluoretos em geral. Como material teste foi escolhido o NaYF4:Yb3+:Er3+, visando sua obtenção na fase hexagonal com dimensões definidas. Experiências de síntese deste material por co-precipitação, sem uso de surfactantes, foram realizadas para comparação com as sínteses obtidas via microfluídica. Por co-precipitação foram obtidas partículas esféricas, na fase cubica do NaYF4. Foram projetados e fabricados, via usinagem a laser de pulsos ultracurtos em substrato de vidro ótico BK7, três circuitos microfluídicos. Nas experiências de sínteses realizadas nestes chips foram obtidas NPs de NaYF4:Yb3+:Er3+ tanto na fase cubica quanto na fase hexagonal, em diferentes proporções, dependendo dos fluxos de injeção dos precursores no micro reator, da temperatura e da taxa de residência. As NPs obtidas neste trabalho foram caracterizadas através de DRX e analise pelo método de Rietveld, para a identificação das fases do material, MET para definição de forma e tamanho da nanopartículas e MEV para estudo dos microcanais dos chips usinados a lasers. Os melhores resultados foram observados em chips com microcanais da ordem de 400-600μm, pois minimizam o problema de obstrução. Contudo, o controle da temperatura precisa ser otimizado para evitar trincas nos microcircuitos. As NPs obtidas via microfluídica apresentaram distribuição de tamanho na faixa de 5 a 200nm e fases com estrutura hexagonal e cubica. Foi possível obter NPs de fase única cubica, mas o mesmo não ocorreu para fase hexagonal do NaYF4. O presente estudo permitiu definir vários fatores para a obtenção das NPs de NaYF4 via microfluídica e também referente a fabricação, montagem e uso dos chips, porém para obter NPs desse material com controle da dimensão e fases serão necessários estudos complementares. / This work presents the synthesis of NaYF4 nanoparticles (NPs), doped with rare earth ions, using microfluidic systems designed and fabricated at IPEN through Crystal Growth Lab and Materials Laser Processing Lab partnership. The aim of this work was the study of different microfluidic chips laser machined for use in fluoride NPs synthesis. The compound NaYF4:Yb3+:Er3+ (Yb 10 mole%; Er 0.5 mole %) was chosen to test the fabricated microfluidic chips aiming the production of NPs with hexagonal structure with defined dimensions. Synthesis experiments by co-precipitation method of this material without any surfactant were performed to compare with microfluidics synthesis. By this method spherical particles, were obtained with the cubic NaYF4 crystalline structure. Three different chips were designed and fabricated, using a femtosecond laser to machine BK7 optical glass substrate. The synthesis experiments with these chips resulted in NaYF4:Yb3+:Er3+ NPs with both cubic and hexagonal crystalline structure, in different proportions, depending of precursors flux rates, temperature and resident time. The obtained materials of all experiments were characterized by X-ray diffraction and Rietveld analysis, to define crystalline structures parameters; transmission microscopy to define shape and size of NPs and scanning electron microscopy to characterize the chips micro channels machined by laser. The best results were observed for chips with channels of 400-600μm, in view of the obstruction decrease in the chips. The NPs obtained with microfluidics presented sizes from 5nm up to 200nm and hexagonal and cubic crystallographic structures. Cubic single phase NPs were obtained, but the same did not happened with the NaYF4 hexagonal phase. The present study allowed establishing many different parameters for NaYF4 NPs synthesis through microfluidics and concerning fabrication, assembly and experimental use of microfluidic chips, however, additional experiments will be necessary to obtain the fluoride NPs with controlled size and shape.
|
9 |
Laser assisted machining of high chromium white cast-ironArmitage, Kelly, n/a January 2006 (has links)
Laser-assisted machining has been considered as an alternative for difficult-to-machine
materials such as metallic alloys and ceramics. Machining of some materials such as
high chromium alloys and high strength steels is still a delicate and challenging task.
Conventional machines or computer numerical control (CNC) machines and cutting
tools cannot adapt easily to such materials and induce very high costs for operations of
rough machining or finishing. If laser-assisted machining can be implemented
successfully for such materials, it will offer several advantages over the traditional
methods including longer tool life, shorter machining time and reduced overall costs.
This thesis presents the results of the research conducted on laser assisted machining of
hard to wear materials used in making heavy duty mineral processing equipment for the
mining industry. Experimental set up using a high power Nd:YAG laser beam attached
to a lathe has been developed to machine these materials using cubic boron nitride
(CBN) based cutting tools. The laser beam was positioned so that it was heating a point
on the surface of the workpiece directly before it passed under the cutting tool. Cutting
forces were measured during laser assisted machining and were compared to those
measured during conventional machining.
Results from the experiments show that with the right cutting parameters and laser beam
position, laser assisted machining results in a reduction in cutting forces compared to
conventional machining.
A mathematical thermal model was used to predict temperatures within the workpiece at
depths under the laser beam spot. The model was used to determine the effect of
various cutting and laser parameters on the temperature profile within the workpiece.
This study shows that laser assisted machining of hard to wear materials such as high
chromium white cast iron shows potential as a possible economical alternative to
conventional machining methods. Further research is needed before it can be
introduced in industry as an alternative to conventional machining.
|
10 |
Laser processing of Silica based glassHolmberg, Patrik January 2015 (has links)
The main topic of this thesis work is photosensitivity and photo-structuring of optical fibers and bulk glass. Although research in the field of photosensitivity in glass and optical fibers has been ongoing for more than three decades, the underlying mechanisms are still not well understood. The objective was to gain a better understanding of the photo-response by studying photosensitivity from a thermodynamic perspective, as opposed to established research focusing on point defects and structural changes, and strain and stress in optical fibers. Optical fibers was mainly used for experimental studies for two reasons; first, photosensitivity in fibers is more pronounced and more elusive compared to its bulk counterpart, and secondly, fibers provide a simplified structure to study as they experimentally can be seen as one-dimensional.Initially, ablation experiments on bulk glass were performed using picosecond infrared pulses. With a design cross section of 40x40 μm, straight channels were fabricated on the top (facing incident light) and bottom side of the sample and the resulting geometries were analyzed. The results show a higher sensitivity to experimental parameters for bottom side ablation which was ascribed to material incubation effects. Moreover, on the top side, the resulting geometry has a V-shape, independent of experimental parameters, related to the numerical aperture of the focusing lens, which was ascribed to shadowing effects.After this work, the focus shifted towards optical fibers, UV-induced fiber Bragg gratings (FBGs) and thermal processing with conventional oven and with a CO2 laser as a source of radiant heat.First, a system for CO2 laser heating of optical fibers was constructed. For measuring the temperature of the processed fibers, a special type of FBG with high temperature stability, referred to as "Chemical Composition Grating" (CCG) was used. A thorough characterization and temperature calibration was performed and the results show the temperature dynamics with a temporal resolution of less than one millisecond. The temperature profile of the fiber and the laser beam intensity profile could be measured with a spatial resolution limited by the grating length and diameter of the fiber. Temperatures as high as ~ 1750 °C could be measured with corresponding heating and cooling rates of 10.500 K/s and 6.500 K/s.Subsequently, a thorough investigation of annealing and thermal regeneration of FBGs in standard telecommunication fibers was performed. The results show that thermal grating regeneration involves several mechanisms. For strong regeneration, an optimum annealing temperature near 900 C was found. Two different activation energies could be extracted from an Arrhenius of index modulation and Braggv iwavelength, having a crossing point also around 900 °C, indication a balance of two opposing mechanisms.Finally, the thermal dynamics and spectral evolution during formation of long period fiber gratings (LPGs) were investigated. The gratings were fabricated using the CO2 laser system by periodically grooving the fibers by thermal ablation. Transmission losses were reduced by carefully selecting the proper processing conditions. These parameters were identified by mapping groove depth and transmission loss to laser intensity and exposure time. / Huvudtemana i denna avhandling är fotokänslighet och fotostrukturering av optiska fibrer och bulk glas. Trots att forskning inom fotokänslighet i glas och optiska fibrer har pågått under mer än tre decennier är de bakomliggande mekanismerna ännu inte klarlagda. Syftet var att få en bättre förståelse för fotoresponsen genom att studera fotokäsligheten ur ett termodynamiskt perspektiv, i motsats till etablerad forskning med fokus på punktdefekter och strukturförändringar, samt mekaniska spännings effekter i optiska fibrer. Optiska fibrer användes för flertalet av de experimentella studierna av två skäl; för det första är fotokänsligheten i fibrer större och dessutom vet man mindre om bakomliggande mekanismer jämfört med motsvarande bulk glas, och för det andra kan fibrer vara enklare att studera eftersom de experimentellt kan ses som en endimensionell struktur.Inledningsvis utfördes ablaherings experiment på bulk glas med en infraröd laser med pikosekund pulser. Raka kanaler med ett designtvärsnitt på 40x40 μm tillverkades på ovansidan (mot infallande ljus) och bottensidan av provet och de resulterande geometrierna analyserades. Resultaten visar en högre känslighet för variationer i experimentella parametrar vid ablahering på undersidan vilket kan förklaras av inkubations effekter i materialet. Dessutom är den resulterande geometrin på ovansidan V-formad, oavsett experimentella parametrar, vilket kunde relateras till den numeriska aperturen hos den fokuserande linsen, vilket förklaras av skuggningseffekter.Efter detta arbete flyttades fokus mot optiska fibrer, UV inducerade fiber Bragg gitter (FBG), och termisk bearbetning med konventionell ugn samt även med en CO2-laser som källa för strålningsvärme.Först konstruerades ett system för CO2-laservärmning av fibrer. För mätning av temperaturen hos bearbetade fibrer användes en speciell sorts FBG med hög temperaturstabilitet, kallade ”Chemical Composition Gratings” (CCG). En grundlig karaktärisering och temperaturkalibrering utfördes och temperaturdynamiken mättes med en tidsupplösning på under en millisekund. Temperaturprofilen i fibern, och laserns strålprofil, kunde mätas med en spatiell upplösning begränsad av gitterlängden och fiberns diameter. Temperaturer upp till ~1750 °C, vilket är högre än mjukpunktstemperaturen, kunde mätas med korresponderande uppvärmnings- och avsvalningshastighet på 10.500 K/s och 6.500 K/s.Därefter gjordes en omfattande undersökning av värmebearbetning och termisk regenerering av FBG:er i telekomfiber. Resultaten visar att termisk gitter-regenerering aktiveras av flera olika mekanismer. Värmebearbetning vid en temperatur omkring 900 °C resulterade i starka gitter efter en regenerering vid en temperatur på 1100 °C. Två olika aktiveringsenergier kunde extraheras från en Arrhenius plot avseende brytningsindexmodulation och Braggvåglängd, med en skärningspunkt tillika runt 900 °C, vilket indikerar en avvägning mellan två motverkande mekanismer vid denna temperatur.Slutligen undersöktes temperaturdynamiken och de spektrala egenskaperna under tillverkning av långperiodiga fibergitter (LPG). Gittren tillverkades med CO2-vi iilasersystemet genom att skapa en periodisk urgröpning medelst termisk ablahering. Transmissionsförluster kunde reduceras med noggrant valda processparametrar. Dessa parametrar identifierades genom mätningar av ablaherat djup och transmissionsförlust som funktion av laserintensitet och exponeringstid. / <p>QC 20150924</p>
|
Page generated in 0.0914 seconds