• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of photomodifiable material systems for maskless patterning of functional ceramic and metallic materials at multiple length scales

Alabi, Taiwo Raphael 29 March 2013 (has links)
Silicon and silicon-based materials have been investigated for the fabrication of electronic, optoelectronic, solar, and structural/mechanical devices. To enable the continuous use of silicon-based materials for next generation device applications, new and inexpensive ways of fabricating features of silicon, and silica-based materials are needed. This dissertation investigates: 1) novel techniques for the fabrication of silica and silicon nanofeatures with potential application in the electronics and optoelectronics industry; 2) new designs of photomodifiable material systems (resists) for maskless patterning of silica filled composites for structural/mechanical applications. Sub-micron and nano-scaled features were fabricated onto silicon and silicon oxide substrates using a technique combining block copolymers and laser interference ablation. The sacrificial block copolymers are loaded with metallic salt precursors and patterned with a UV laser to generate device-oriented nanofeatures. New photopolymerizable material systems (negative tone resists) were developed based on curcumin photosensitizer and an epoxy-acrylate, vinylether, and vinylether-acrylate silica¬-loaded material systems. The cationic and radical mechanisms employed by the monomeric systems under a high vapor pressure mercury lamp source were investigated with several materials characterization techniques.

Page generated in 0.1644 seconds