• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 16
  • 16
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Phase-locking Stability Of A Quasi-single-cycle Pulse

Bodnar, Nathan 01 January 2013 (has links)
There is increasing interest in the generation of very short laser pulses, even down to attosecond (10-18 s) durations. Laser systems with femtosecond pulse durations are needed for these applications. For many of these applications, positioning of the maximum electric field within the pulse envelope can affect the outcome. The peak of the electric field relative to the peak of the pulse is called the Carrier Envelope Phase (CEP). Controlling the position of the electric field becomes more important when pulse duration approaches single-cycle. This thesis focuses on the stabilization of a quasi-single-cycle laser facility. Improvements to this already-established laser facility, HERACLES (High Energy, Repetition rate Adjustable, Carrier-Locked-to-Envelope System) described in this thesis include a stabilized pump line and the improvement in CEP stabilization electronics. HERACLES is built upon an Optical Parametric Chirped Pulse Amplification (OPCPA) architecture. This architecture uses Optical Parametric Amplification (OPA) as the gain material to increase the output energy of the system. OPA relies on a nonlinear process to generate high gain (106 ) with ultra-wide bandwidth. Instabilities in the OPA driving pump energy can create dynamically fluctuations in the final OPCPA output energy. To reduce these fluctuations two key upgrades were implemented on the pump beam. Both were major improvements in the stability. Firstly, an improved regenerative amplifier design reduced beam pointing fluctuations. Secondly, the addition of a pump monitoring system with feedback-control eliminated long-term power drifts. Both enhanced the OPA pulse-to-pulse and long-term stability. iv To improve the stability in measuring CEP drifts, modification of the feedback electronics was needed. The modification consisted of integrating noise reduction electronics. This novel noise reducer uses a similar process to a super-heterodyne receiver. The noise reducer resulted in 60 dB reduction of out-of-band noise. This led to increased signal quality with cleaner amplification of weaker signals. The enhanced signal quality led to more reliable long-term locking. The synthetically increased signal-to-noise ratio allows locking of the CEP frequency below the typically requirements. This integration allows relaxed constraints on the laser systems. The optics and electronics of a high-power, quasi-single cycle laser facility were improved. This thesis included the stabilization of the pump line and the stabilization of the CEP. This work allows for new long-duration experiments.
12

A Study of Alkali-Resistant Materials for Use in Atomic Physics Based Systems

Fletcher, Aaron Thomas 18 December 2017 (has links)
No description available.
13

Montage et caractérisation d’un système de spectroscopie Raman accordable en longueur d’onde utilisant des réseaux de Bragg comme filtre : application aux nanotubes de carbone

Meunier, François 04 1900 (has links)
La spectroscopie Raman est un outil non destructif fort utile lors de la caractérisation de matériau. Cette technique consiste essentiellement à faire l’analyse de la diffusion inélastique de lumière par un matériau. Les performances d’un système de spectroscopie Raman proviennent en majeure partie de deux filtres ; l’un pour purifier la raie incidente (habituellement un laser) et l’autre pour atténuer la raie élastique du faisceau de signal. En spectroscopie Raman résonante (SRR), l’énergie (la longueur d’onde) d’excitation est accordée de façon à être voisine d’une transition électronique permise dans le matériau à l’étude. La section efficace d’un processus Raman peut alors être augmentée d’un facteur allant jusqu’à 106. La technologie actuelle est limitée au niveau des filtres accordables en longueur d’onde. La SRR est donc une technique complexe et pour l’instant fastidieuse à mettre en œuvre. Ce mémoire présente la conception et la construction d’un système de spectroscopie Raman accordable en longueur d’onde basé sur des filtres à réseaux de Bragg en volume. Ce système vise une utilisation dans le proche infrarouge afin d’étudier les résonances de nanotubes de carbone. Les étapes menant à la mise en fonction du système sont décrites. Elles couvrent les aspects de conceptualisation, de fabrication, de caractérisation ainsi que de l’optimisation du système. Ce projet fut réalisé en étroite collaboration avec une petite entreprise d’ici, Photon etc. De cette coopération sont nés les filtres accordables permettant avec facilité de changer la longueur d’onde d’excitation. Ces filtres ont été combinés à un laser titane : saphir accordable de 700 à 1100 nm, à un microscope «maison» ainsi qu’à un système de détection utilisant une caméra CCD et un spectromètre à réseau. Sont d’abord présentés les aspects théoriques entourant la SRR. Par la suite, les nanotubes de carbone (NTC) sont décrits et utilisés pour montrer la pertinence d’une telle technique. Ensuite, le principe de fonctionnement des filtres est décrit pour être suivi de l’article où sont parus les principaux résultats de ce travail. On y trouvera entre autres la caractérisation optique des filtres. Les limites de basses fréquences du système sont démontrées en effectuant des mesures sur un échantillon de soufre dont la raie à 27 cm-1 est clairement résolue. La simplicité d’accordabilité est quant à elle démontrée par l’utilisation d’un échantillon de NTC en poudre. En variant la longueur d’onde (l’énergie d’excitation), différentes chiralités sont observées et par le fait même, différentes raies sont présentes dans les spectres. Finalement, des précisions sur l’alignement, l’optimisation et l’opération du système sont décrites. La faible acceptance angulaire est l’inconvénient majeur de l’utilisation de ce type de filtre. Elle se répercute en problème d’atténuation ce qui est critique plus particulièrement pour le filtre coupe-bande. Des améliorations possibles face à cette limitation sont étudiées. / Raman spectroscopy is a useful and non-destructive tool for material characterization. It uses inelastic light scattering interaction with matter to investigate materials. The major part of the performances in a Raman spectroscopy system comes from two light filter units: the first shapes the light source (usually a laser) and the other attenuates the elastic scattered light in the signal beam. In resonant Raman spectroscopy (RRS), the excitation energy (wavelength) is tuned to match an electronic transition of the sample. When in resonance, the Raman cross section is increased by a factor up to 106. Current RRS setups are limited by filtering devices technology. RRS is a complex technique which, for the moment, remains tedious to implement. This master thesis presents the construction of a tunable Raman spectroscopy system based on volume Bragg gratings light filters. The setup is designed to operate in the near infrared region so as to study carbon nanotubes resonances. Steps leading to the operation of the system are described. They cover conceptualization, fabrication, characterization and optimisation of the setup. Collaboration with a local small company, Photon etc, led to the building of two new light filters that allow to tune easily the excitation wavelength. These filters have been adapted to work with a tunable titanium-sapphire laser (tunable from 700 to 1100 nm) and assembled with a homemade microscope and a detection system combining a CCD camera with a grating spectrometer. This document is arranged as follow: First are presented the theoretical aspects surrounding RRS. Carbon nanotubes (CNT) are than described to illustrate the relevance of such technique applied to material science. Principles behind the use of the Bragg filters are described to be followed by a scientific paper in which the main results of this work are presented. These include the optical characterisation of the filters and measurements with the system. Low frequency limits of the system are demonstrated using a sulphur powder where the 27 cm-1 line is clearly resolved. The tunability of the setup is also demonstrated using a bulk carbon nanotube sample. By changing the excitation wavelength, different nanotube chiralities become resonant, leading to different signals in the Raman spectra. Finally, clarifications regarding the alignment, optimisation and operation of the system are described. Low angular acceptance has been found to be the main drawback of the system leading to attenuation problems especially critical for the notch filter. Possible improvements on this limitation are discussed.
14

Montage et caractérisation d’un système de spectroscopie Raman accordable en longueur d’onde utilisant des réseaux de Bragg comme filtre : application aux nanotubes de carbone

Meunier, François 04 1900 (has links)
La spectroscopie Raman est un outil non destructif fort utile lors de la caractérisation de matériau. Cette technique consiste essentiellement à faire l’analyse de la diffusion inélastique de lumière par un matériau. Les performances d’un système de spectroscopie Raman proviennent en majeure partie de deux filtres ; l’un pour purifier la raie incidente (habituellement un laser) et l’autre pour atténuer la raie élastique du faisceau de signal. En spectroscopie Raman résonante (SRR), l’énergie (la longueur d’onde) d’excitation est accordée de façon à être voisine d’une transition électronique permise dans le matériau à l’étude. La section efficace d’un processus Raman peut alors être augmentée d’un facteur allant jusqu’à 106. La technologie actuelle est limitée au niveau des filtres accordables en longueur d’onde. La SRR est donc une technique complexe et pour l’instant fastidieuse à mettre en œuvre. Ce mémoire présente la conception et la construction d’un système de spectroscopie Raman accordable en longueur d’onde basé sur des filtres à réseaux de Bragg en volume. Ce système vise une utilisation dans le proche infrarouge afin d’étudier les résonances de nanotubes de carbone. Les étapes menant à la mise en fonction du système sont décrites. Elles couvrent les aspects de conceptualisation, de fabrication, de caractérisation ainsi que de l’optimisation du système. Ce projet fut réalisé en étroite collaboration avec une petite entreprise d’ici, Photon etc. De cette coopération sont nés les filtres accordables permettant avec facilité de changer la longueur d’onde d’excitation. Ces filtres ont été combinés à un laser titane : saphir accordable de 700 à 1100 nm, à un microscope «maison» ainsi qu’à un système de détection utilisant une caméra CCD et un spectromètre à réseau. Sont d’abord présentés les aspects théoriques entourant la SRR. Par la suite, les nanotubes de carbone (NTC) sont décrits et utilisés pour montrer la pertinence d’une telle technique. Ensuite, le principe de fonctionnement des filtres est décrit pour être suivi de l’article où sont parus les principaux résultats de ce travail. On y trouvera entre autres la caractérisation optique des filtres. Les limites de basses fréquences du système sont démontrées en effectuant des mesures sur un échantillon de soufre dont la raie à 27 cm-1 est clairement résolue. La simplicité d’accordabilité est quant à elle démontrée par l’utilisation d’un échantillon de NTC en poudre. En variant la longueur d’onde (l’énergie d’excitation), différentes chiralités sont observées et par le fait même, différentes raies sont présentes dans les spectres. Finalement, des précisions sur l’alignement, l’optimisation et l’opération du système sont décrites. La faible acceptance angulaire est l’inconvénient majeur de l’utilisation de ce type de filtre. Elle se répercute en problème d’atténuation ce qui est critique plus particulièrement pour le filtre coupe-bande. Des améliorations possibles face à cette limitation sont étudiées. / Raman spectroscopy is a useful and non-destructive tool for material characterization. It uses inelastic light scattering interaction with matter to investigate materials. The major part of the performances in a Raman spectroscopy system comes from two light filter units: the first shapes the light source (usually a laser) and the other attenuates the elastic scattered light in the signal beam. In resonant Raman spectroscopy (RRS), the excitation energy (wavelength) is tuned to match an electronic transition of the sample. When in resonance, the Raman cross section is increased by a factor up to 106. Current RRS setups are limited by filtering devices technology. RRS is a complex technique which, for the moment, remains tedious to implement. This master thesis presents the construction of a tunable Raman spectroscopy system based on volume Bragg gratings light filters. The setup is designed to operate in the near infrared region so as to study carbon nanotubes resonances. Steps leading to the operation of the system are described. They cover conceptualization, fabrication, characterization and optimisation of the setup. Collaboration with a local small company, Photon etc, led to the building of two new light filters that allow to tune easily the excitation wavelength. These filters have been adapted to work with a tunable titanium-sapphire laser (tunable from 700 to 1100 nm) and assembled with a homemade microscope and a detection system combining a CCD camera with a grating spectrometer. This document is arranged as follow: First are presented the theoretical aspects surrounding RRS. Carbon nanotubes (CNT) are than described to illustrate the relevance of such technique applied to material science. Principles behind the use of the Bragg filters are described to be followed by a scientific paper in which the main results of this work are presented. These include the optical characterisation of the filters and measurements with the system. Low frequency limits of the system are demonstrated using a sulphur powder where the 27 cm-1 line is clearly resolved. The tunability of the setup is also demonstrated using a bulk carbon nanotube sample. By changing the excitation wavelength, different nanotube chiralities become resonant, leading to different signals in the Raman spectra. Finally, clarifications regarding the alignment, optimisation and operation of the system are described. Low angular acceptance has been found to be the main drawback of the system leading to attenuation problems especially critical for the notch filter. Possible improvements on this limitation are discussed.
15

Probing the modal characteristics of novel beam shapes

Mourka, Areti January 2014 (has links)
In this thesis, an investigation into the modal characteristics of novel beam shapes is presented. Sculpting the phase profile of a Gaussian beam can result in the generation of a beam with unique properties. Described in this thesis are Laguerre-Gaussian (LG), Hermite-Gaussian (HG) and Bessel beams (BBs). The diffraction of LG beam modes from a triangular aperture is explored and this effect can be used for the efficient measurement of the azimuthal mode index l that indicates the number of multiples of 2π of phase changes that the field displays around one circumference of the optical axis. In this study, only LG beams with zero radial mode index p, with p + 1 denoting the number of bright high intensity concentric rings around the optical axis, were considered. Then, a powerful approach to simultaneously determine both mode indices of a pure LG beam using the principal component analysis (PCA) algorithm on the observed far-field diffraction patterns was demonstrated. Owing to PCA algorithm, the shape of the diffracting element used to measure the mode indices is in fact of little importance and the crucial step is ‘training' any diffracting optical system and transforming the observed far-field diffraction patterns into the uncorrelated variables (principal components). Our PCA method is generic and it was extended to other families of light fields such as HG, Bessel and superposed beams. This reinforces the widespread applicability of this method for various applications. Finally, both theoretically and experimentally investigations using interferometry show the definitive linkage between both the radial and azimuthal mode indices of a partially coherent LG beam and the dislocation rings in the far-field cross-correlation function (CCF).
16

Quantum cascade laser spectroscopy : developments and applications

Walker, Richard James January 2011 (has links)
This thesis presents work examining the characteristics and applicability of quantum cascade lasers. An introduction is given explaining both the desire for a widely tunable, narrow bandwidth device working in the midinfrared, as well as detailing the ways in which quantum cascade lasers (QCLs) fulfill these requirements. The development and manufacture of QCLs are then discussed. The experimental section of this thesis is then split into three parts. Chapter 2 concerns the characterisation and application of several pulsed QCLs. The intrapulse mode of operation is employed and the effect of the resulting rapid frequency chirp upon molecular spectra is investigated in the form of rapid passage signals. The evolution of said rapid passage signals is then investigated as a function of chromophore pressure and identity, with different QCLs, chirp rates, and optical path lengths. The prospect of producing population transfer with chirped lasers is discussed. Chapters 3, 4, and 5 are then concerned with the application and characterisation of continuous wave QCLs. In these chapters a widely tunable commercially produced EC-QCL is utilised as well as two DFB QCLs, one of which is used in tandem with a home-made mount and temperature controller. In Chapter 3 a number of sensitive detection techniques are compared with the employment of wavelength modulation spectroscopy, long path cells and optical cavities, and the narrow bandwidth of QCLs utilised to determine a previously unknown spectral constant of DBr. Chapters 4 and 5 then utilise the high power of an external cavity quantum cascade laser in sub-Doppler Lamb-dip and polarisation spectroscopy measurements and then a pump-probe experiment. The laser linewidth is investigated on a millisecond timescale returning a current noise limited value of c.a. 2 MHz and the fundamental linewidth of the device investigated by altering the injection current. Chapter 5 is concerned with the pump-probe experiment, directly measuring the hot band absorption in a ladder like transition (R(6.5)$_\frac{1}{2}$ $v=1\leftarrow0$ and P(7.5)$_\frac{1}{2}$ $v=1\leftarrow0$). The Bennett peak in the hot band is observed with a DFB-QCL swept at $\sim 0.15$ MHz ns$^{-1}$ and is seen not just as a pump bandwidth limited lineshape, but as a highly velocity selected rapid passage signal. The effect of pressure, pump and probe scan rate and power upon this rapid passage signal is also studied. It is further noted that rapid thermalisation occurs within $v=1$ such that at pressures above c.a. 30 mTorr a broad NO doublet absorption is observed beneath the Bennett peak from which a total population transfer of c.a. $16 \%$ can be estimated. Finally an experiment is discussed in which this population transfer could be increased for use in secondary applications. Chapter 6 then presents initial measurements with two prototype pulsed 3.3 \si{\micro\metre} QCLs considering the prospects of such devices. A Fabry-P\'rot device is first studied using a Fourier transform spectrometer and temperature tuning used to produce a spectrum of the Q-branch of CH$_4$ around 3025 cm$^$. Experiments are then performed using a DFB QCL investigating the chirp rate of the system as an indicator of the rate of heat accumulation within the system. Heat management is of particular consideration when the sea-change is made from pulsed to continuous devices. For this device absorption spectra of two CH$_4$ transitions at 2971 cm$^$ are used to determine the chirp rate, which is found to be c.a. 1.8 GHz ns$^$, at least an order of magnitude higher than that of the longer wavelength pulsed devices considered in Chapter 2.

Page generated in 0.0805 seconds