• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 4
  • 3
  • 3
  • Tagged with
  • 34
  • 34
  • 9
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electronic materials : growth and characterisation

Grishin, Michael A. January 2005 (has links)
In this thesis the InSb(111), InAs(111) and GaSb(001) surfaces have been studied by means of time- and angle-resolved photoemission spectroscopy based upon the femtosecond laser system. The pump-and-probe technique allows to analyse both electron states in the valence band and normally unpopulated electron states above the valence band, which can be occupied by transiently excited carriers at the optically pumped surface. The life time of excited carriers is analysed by controlling over the time delay between pump and probe pulses. Experimental studies of the InSb(111) surface and comparison with a previously studied InSb(110) surface show electron excitations in the bulk region with a minor surface contribution. Time-resolved experiments of carrier dynamics at the polar InAs(111)A and InAs(111)B surfaces show about the same life time of excited carriers, while no populated states above the valence band maximum have been found at the InAs(111)A due to the charge removal. Surface intergap electron states have been found at the GaSb(001) surface located at ~250 meV above the valence band maximum. Angle-resolved experiments showed a strong confinement of this state at the centre of the surface Brillouin zone. A new two dimensional angle-resolved multi-anode analyser for the femtosecond laser photoemission setup has been constructed. The analyser can resolve a cone opening angle of ~1º at a drift distance of ~0.5 m with an energy resolution of ~125 meV. A continuous series of binary system SrTiO3–PbZr0.52Ti0.48O3 has been grown by pulsed laser deposition (PLD) on sapphire substrate with crystalline quality control by x-ray diffraction (XRD). The maximum tunability has been tailored to room temperature, where STO�PZT (71/29) composition shows superior performance. A PbZr0.52Ti0.48O3 thin film pressure sensor has been fabricated by PLD and characterised by XRD and electrical measurements. The piezoelectric constant was found to be ~20 % higher compared to the bulk ceramics. A ferroelectric thin film electro-optical cell Na0.5K0.5NbO3/La0.5Sr0.5CoO3 (NKN/LSCO) on sapphire has been fabricated by PLD. Refractive indices and electro-optical coefficient of the cell were characterised by prism coupling refractometry. The tunability of the PLD fabricated 2 μm slot NKN thin film interdigital capacitor has been found ~23 % at 40 V bias voltage and frequency 1 MHz. / QC 20101015
12

Analysis and control of light-induced processes in molecules: Electron and nuclear quantum dynamics for aspects of stereoisomerism and spectroscopy

Kröner, Dominik (Dr. rer. nat.) January 2013 (has links)
The habilitation thesis covers theoretical investigations on light-induced processes in molecules. The study is focussed on changes of the molecular electronic structure and geometry, caused either by photoexcitation in the event of a spectroscopic analysis, or by a selective control with shaped laser pulses. The applied and developed methods are predominantly based on quantum chemistry as well as on electron and nuclear quantum dynamics, and in parts on molecular dynamics. The studied scientific problems deal with stereoisomerism and the question of how to either switch or distinguish chiral molecules using laser pulses, and with the essentials for the simulation of the spectroscopic response of biochromophores, in order to unravel their photophysics. The accomplished findings not only explain experimental results and extend existing approaches, but also contribute significantly to the basic understanding of the investigated light-driven molecular processes. The main achievements can be divided in three parts: First, a quantum theory for an enantio- and diastereoselective or, in general, stereoselective laser pulse control was developed and successfully applied to influence the chirality of molecular switches. The proposed axially chiral molecules possess different numbers of "switchable" stable chiral conformations, with one particular switch featuring even a true achiral "off"-state which allows to enantioselectively "turn on" its chirality. Furthermore, surface mounted chiral molecular switches with several well-defined orientations were treated, where a newly devised highly flexible stochastic pulse optimization technique provides high stereoselectivity and efficiency at the same time, even for coupled chirality-changing degrees of freedom. Despite the model character of these studies, the proposed types of chiral molecular switches and, all the more, the developed basic concepts are generally applicable to design laser pulse controlled catalysts for asymmetric synthesis, or to achieve selective changes in the chirality of liquid crystals or in chiroptical nanodevices, implementable in information processing or as data storage. Second, laser-driven electron wavepacket dynamics based on ab initio calculations, namely time-dependent configuration interaction, was extended by the explicit inclusion of magnetic field-magnetic dipole interactions for the simulation of the qualitative and quantitative distinction of enantiomers in mass spectrometry by means of circularly polarized ultrashort laser pulses. The developed approach not only allows to explain the origin of the experimentally observed influence of the pulse duration on the detected circular dichroism in the ion yield, but also to predict laser pulse parameters for an optimal distinction of enantiomers by ultrashort shaped laser pulses. Moreover, these investigations in combination with the previous ones provide a fundamental understanding of the relevance of electric and magnetic interactions between linearly or non-linearly polarized laser pulses and (pro-)chiral molecules for either control by enantioselective excitation or distinction by enantiospecific excitation. Third, for selected light-sensitive biological systems of central importance, like e.g. antenna complexes of photosynthesis, simulations of processes which take place during and after photoexcitation of their chromophores were performed, in order to explain experimental (spectroscopic) findings as well as to understand the underlying photophysical and photochemical principles. In particular, aspects of normal mode mixing due to geometrical changes upon photoexcitation and their impact on (time-dependent) vibronic and resonance Raman spectra, as well as on intramolecular energy redistribution were addressed. In order to explain unresolved experimental findings, a simulation program for the calculation of vibronic and resonance Raman spectra, accounting for changes in both vibrational frequencies and normal modes, was created based on a time-dependent formalism. In addition, the influence of the biochemical environment on the electronic structure of the chromophores was studied by electrostatic interactions and mechanical embedding using hybrid quantum-classical methods. Environmental effects were found to be of importance, in particular, for the excitonic coupling of chromophores in light-harvesting complex II. Although the simulations for such highly complex systems are still restricted by various approximations, the improved approaches and obtained results have proven to be important contributions for a better understanding of light-induced processes in biosystems which also adds to efforts of their artificial reproduction. / Die Habilitationsschrift behandelt theoretische Untersuchungen von durch Licht ausgelösten Prozessen in Molekülen. Der Schwerpunkt liegt dabei auf Veränderungen in der Elektronenstruktur und der Geometrie der Moleküle, die durch Bestrahlung mit Licht entweder bei einer spektroskopischen Untersuchung oder bei gezielter Kontrolle durch geformte Laserpulse herbeigeführt werden. Um die dabei auftretende Elektronen- und Kerndynamik zu simulieren, wurden vornehmlich quantentheoretische Methoden eingesetzt und weiterentwickelt. Die wissenschaftlichen Fragestellungen beschäftigen sich mit dem gezielten Verändern und dem Erkennen der räumlichen Struktur von Molekülen ohne Drehspiegelachse, der sog. molekularen Chiralität, sowie mit durch Licht eingeleiteten Prozessen in biologisch relevanten Pigmenten auf sehr kurzen Zeitskalen. Die entwickelten Ansätze und gewonnenen Erkenntnisse lassen sich drei Haupterfolge unterteilen: Erstens gelang die Entwicklung einer generellen Kontrolltheorie für das Ein- und Umschalten von molekularer Chiralität mit geformten Laserpulsen. Dabei wird die räumliche Struktur der vorgeschlagenen molekularen Schalter zwischen ihren stabilen sog. stereoisomeren Formen selektiv geändert, was sich auf ihre optischen und chemischen Eigenschaften auswirkt. Für komplexere Bedingungen, wie z.B. auf einer Oberfläche verankerten molekularen Schaltern verschiedener Orientierung, wurde eine neue Pulsoptimierungsmethode basierend auf Wahrscheinlichkeiten und Statistik entwickelt. Solche laserpulskontrollierten chiralen molekularen Schalter hofft man u.a. in der Nanotechnologie zum Einsatz zu bringen, wo sie z.B. als Informationsspeicher dienen könnten. Zweitens konnte geklärt werden, welche die wesentlichen Einflüsse sind, die das Erkennen von sog. Enantiomeren, das sind spiegelbildliche Moleküle von entgegengesetzter Chiralität, nach Ionisierung durch ultrakurze zirkular polarisierte Laserpulse ermöglichen. Diese Form des sog. Zirkulardichroismus in der Ionenausbeute erlaubt die quantitative und qualitative Unterscheidung von Enantiomeren in der Massenspektrometrie. Durch Simulation der Elektronendynamik während der Laseranregung konnte u.a. erstmals gezeigt werden, dass neben der Zirkularpolarisation der Laserpulse vor allem die schwachen magnetischen Wechselwirkungen für die Unterscheidung entscheidend sind. Drittens wurden die Spektren von in der Natur vorkommenden Pigmenten simuliert, welche u.a. an wichtigen biologischen Funktionen, wie dem Sammeln von Sonnenenergie für die Photosynthese, beteiligt sind. Die Lichtanregung führt dabei zu einer Veränderung der Elektronenstruktur und Geometrie der Pigmente, wobei letzteres wichtige Konsequenzen für die Verteilung der Energie auf die spektroskopisch beobachteten Molekülschwingungen mit sich bringen. Auch der wichtige Einfluss der biochemischen Umgebung auf die Elektronenstruktur der Pigmente bzw. den Energietransfer zwischen solchen wurde untersucht. Neben der Klärung experimenteller Ergebnisse ermöglichen die Untersuchungen neue Einblicke in die fundamentalen Prozesse kurz nach der Lichtanregung -- Erkenntnisse, die auch für die technische Nachahmung der biologischen Funktionen von Bedeutung sein können.
13

Advancements and understanding of Blister-Based Laser-Induced Forward-Transfer

Goodfriend, Nathan Thomas January 2018 (has links)
Blister-Based Laser-Induced Forward-Transfer (BB LIFT) is a new method of particle transfer, capable of projecting complex and fragile particles into the gas phase. The technique uses a laser pulse to deform a metal or polymer film on a transparent substrate. The deformation of the film creates a blister which can mechanically desorb particles adhered to the surface. This thesis covers the study of the underlying mechanisms of blister formation in relation to laser pulse duration and film properties, whilst also advancing upon the technique by developing new methods for particle transfer of 0-dimensional point particles, 1-dimensional nanotubes, and 2-dimensional crystals. Study of the blister formation was carried out on uncoated 200-400 nm Titanium films, using 120 fs and 7 ns laser pulses. The blisters were studied by Atomic Force Microscopy and optical analysis. Furthermore a theoretical model for the blister formation using ns laser pulses was developed using a linear heat transfer model, showing a good agreement between experiment and theory. From this model mechanisms for blister formation under both of these pulse durations were developed. It was concluded that ns laser pulses heat the thin film causing it to undergo thermal expansion where the temperature and thermal expansion properties of the film define the blister. Femtosecond pulses form blisters due to confined ablation of the film at the interface of the transparent substrate and the film. The expanding gas forces the metal to stretch, where the deformation is dictated by the Young’s modulus of the material with the major factor being the thickness of the titanium film. The velocity distribution of the desorbed material was studied by means of mass spectroscopy. An ionising laser pulse was focused a known distance from the donor film. The ejected particles crossed the laser beam, and with a controlled delay of the time between the blister pulse and ionisation pulse the velocities could be determined for fullerenes (C60) and gold coated silicon nanoparticles (Auroshells). Utilising C60 as the desorbed material we could identify that for ns BB-LIFT the C60 was emitted at a velocity mostly dependent upon the heat expansion coefficient for the titanium film, resulting in a velocity approximating 100 ms-1 with a secondary emission of fullerenes due to evaporation from the hot surface. However, for fs BB-LIFT this evaporated emission was not present and the velocities could be adjusted from 7-70 ms-1 by varying the Ti film thickness from 360 nm to 210 nm respectively. These results are consistent with the mechanisms proposed earlier. The spread of the desorbed particle beam was also studied for nanosecond and femtosecond laser-induced blisters utilising auroshells and C60. This was accomplished by placing a receiver platform at a known distance in front of the donor film in order to collect the desorbed particles. The radial spread was then analysed indicating a flat deposit approximately the size of the initial blister with a 5 degree spread from that point. This indicates that the desorbed beam is highly directional. From this it could be ascertained that the blisters do not form from a single point position on the film but expand uniformly with the area of laser irradiation defining the growth point of the blister. A problem with many molecular beam techniques is that large fragile molecules or nanoparticles cannot be introduced to the gas phase without causing damage to the particles. Studies into the desorption of Auroshells (150 nm diameter), C60 (1 nm), PCBM (a fragile exohedral fullerene), carbon nanotubes (1x1000 nm), and 2D films (1x10000x10000 nm) showed that these materials were successfully transferred from the donor film to a receiver plate without causing damage to the particles. This was determined via Raman, NMR, AFM, and SEM measurements. Lastly a technique that allowed the growth of carbon nanotubes directly on the donor film utilising a a multi-layered substrate was developed, enabling the removal and deposition of the nanotubes, without exposing them to any chemical treatment.
14

High-Yield Optical Undulators Scalable to Optical Free-Electron Laser Operation by Traveling-Wave Thomson-Scattering

Steiniger, Klaus 18 April 2018 (has links)
All across physics research, incoherent and coherent light sources are extensively utilized. Especially highly brilliant X-ray sources such as third generation synchrotrons or free-electron lasers have become an invaluable tool enabling experimental techniques that are unique to these kinds of light sources. But these sources have developed to large scale facilities and a demand in compact laboratory scale sources providing radiation of similar quality arises nowadays. This thesis focuses on Traveling-Wave Thomson-Scattering (TWTS) which allows for the realization of ultra-compact, inherently synchronized and highly brilliant light sources. The TWTS geometry provides optical undulators, through which electrons pass and thereby emit radiation, with hundreds to thousands of undulator periods by utilizing pulse-front tilted lasers pulses from high peak-power laser systems. TWTS can realize incoherent radiation sources with orders of magnitude higher photon yield than established head-on Thomson sources. Moreover, optical free-electron lasers (OFELs) can be realized with TWTS if state-of-the-art technology in electron accelerators and laser systems is utilized. Tilting the laser pulse front with respect to the wavefront by half of this interaction angle optimizes electron and laser pulse overlap by compensating the spatial offset between electrons and the laser pulse-front at the beginning of the interaction when the electrons are far from the laser pulse axis. The laser pulse-front tilt ensures continuous overlap between electrons and laser pulse while the electrons cross the laser pulse cross-sectional area. Thus the interaction distance can be controlled in TWTS by the laser pulse width rather than laser pulse duration. Utilizing wide, petawatt class laser pulses allows realizing thousands of optical undulator periods. This thesis will show that TWTS OFELs emitting ultraviolet radiation are realizable today with existing technology for electron accelerators and laser systems. The requirements on electron bunch and laser pulse quality of these ultraviolet TWTS OFELs are discussed in detail as well as the corresponding requirements of TWTS OFELs emitting in the soft and hard X-ray range. These requirements are derived from scaling laws which stem from a self-consistent analytic description of the electron bunch and radiation field dynamics in TWTS OFELs presented within this thesis. It is shown that these dynamics in TWTS OFELs are qualitatively equivalent to the electron bunch and radiation field dynamics of standard free-electron lasers which analytically proves the applicability of TWTS for the realization of an optical free-electron laser. Furthermore, experimental setup strategies to generate the pulse-front tilted TWTS laser pulses are presented and designs of experimental setups for the above examples are discussed. The presented setup strategies provide dispersion compensation, required due to angular dispersion of the laser pulse, which is especially relevant when building compact, high-yield hard X-ray TWTS sources in large interaction angle setups. An example of such an enhanced Thomson source by TWTS, which provides orders of magnitude higher spectral photon density than a comparable head-on interaction geometry, is presented, too
15

Few cycle pulse laser induced damage studies of gallium oxide and gallium nitride

Harris, Brandon Eric January 2019 (has links)
No description available.
16

Laser wakefield acceleration of electrons to GeV energies and temporal laser pulse compression characterization in a capillary discharge waveguide

Walker, Paul Andreas January 2013 (has links)
This thesis presents results from three strands of experimental work aimed towards establishing more reproducible, higher energy, and more accurately measured electron beams generated by a laser-driven plasma accelerator. The first experiment calibrated two types of detector frequently used to measure the bunch charge in laser wakefield accelerator experiments, namely scintillating screens and image plates. The experiments undertaken at the DAFNE beam test facility in Frascati, Italy, confirmed that the fluorescence signal from Kodak Lanex Regular screens varies linearly with the charge density for a nanosecond elec- tron bunch for charge densities in the range between ρ = 2 × 10<sup>−7</sup> <sup>C</sup>/<sub>m<sup>2</sup></sub> to ρ = 10−5 <sup>C</sup>/<sub>m<sup>2</sup></sub>. A sensitivity measurement of FUJIFILM BAS-IP MS image plates resulted in a sensitivity of SMS = (0.0487 ± 0.0028 ) PSL, which is 2.4 times higher than had been assumed prior to this work. The second strand aimed at improving the operation of the capillary discharge waveguide by re-designing the discharge circuit and the waveguide housing. The experiment showed that combining a glow discharge circuit with the pulsed discharge circuit of the capillary discharge waveguide reduced electrical noise, the timing jitter between the trigger pulse and the discharge, and the voltage required to initially break down the capillary gas for pressures below 10 mbar and above 150 mbar. The size of the housing of the capillary discharge waveguide was reduced in all three dimensions by an average of 60 %, enabling the device to be used in future staging experiments, and an open design of the housing eliminated the possibility of unwanted discharges. The new capillary design performed without flaw in the Astra-Gemini experiment and no disadvantages compared with the old housing were found. The third strand of work describes an experiment undertaken with the Astra-Gemini laser at the Central Laser Facility of the Rutherford Appleton Laboratory, United Kingdom. The improved capillary discharge waveguide was used to generate GeV-scale electron beams with good reproducibility. Beams of electrons with energies above 900 MeV, and with root- mean-square divergence of 3.5 mrad, were observed for a plasma density of 2.2 × 10<sup>18</sup> cm<sup>−3</sup> and a peak input laser power of 55 TW. The variation of the maximum electron energy with the plasma density was measured and found to agree well with simple models. The energy spectra of the generated electron beams exhibited good shot-to-shot reproducibility, with the observed variations attributable to the measured shot-to-shot jitter of the laser parameters. Two methods for correcting the effect of beam pointing variations on the measured energy spectrum were tested and it was found that using a thin Lanex screen in front of the electron spectrometer was easy to implement and did not degrade the recorded energy spectrum. The first observation of temporal compression of a laser pulse within a plasma channel with simultaneous electron acceleration to energies higher than 500 MeV is also presented. This measurement suggests that the pulse compresses linearly from the back as predicted by theory.
17

Dinâmica molecular da reação de abstração de hidrogênio no MH4 (M = C, Si, Ge, Sn) por átomos de H, F, Cl e I induzida por pulso de laser de femtosegundos

Santana, Aloísio de Jesus 31 July 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this study, it has been carried out quantum molecular dynamics simulations for the hydrogen abstraction reaction from methane, silane, germane and stannane by H, F, Cl and I atoms and being or not being induced by femtosecond laser pulses with the aim to favor the dissociation of the M-H (M = C, Si, Ge and Sn). All the simulations have been performed using a simulation scheme based on ab initio calculations of molecular dynamics, where the motion of the atomic nuclei is described classically while the electrons are treated quantically by the Density Functional Theory (DFT). The results of the molecular dynamics simulations for the hydrogen abstraction reaction from methane, that is a very inert molecule, show that only the fluorine atom is able to promote the dissociation of the C-H bond. For the simulations performed in the presence of the electromagnetic radiation, it was possible to observe that the femtosecond laser pulse could induce the hydrogen abstraction from methane when the reaction occurs with the hydrogen or fluorine atom. The results of the molecular dynamics simulations for the hydrogen abstraction reaction from silane show that also the fluorine as the hydrogen atoms are able to dissociate effectively the Si-H bond in silane. In the case of the hydrogen abstraction from silane by the chlorine atom, the effective Si-H dissociation does not happen. In the simulations including the pulsed electromagnetic radiation, it is observed that it was possible to favor even more the hydrogen abstraction reaction from silane by the hydrogen and fluorine atoms, moreover, it was possible to turn effective the dissociation of the Si-H bond by the chlorine atom. The GeH4 and SnH4 molecules could be easily dissociated by the hydrogen, fluorine and chlorine atoms. About the iodine atom, it was not able to promote the hydrogen abstraction reaction in germane and stannane, even in the presence of the femtosecond laser pulse. / Neste trabalho foram realizadas simulações de dinâmica molecular quântica para as reações de abstração de hidrogênio nas moléculas de metano, silano, germano e estanano por átomos de H, F, Cl, e I sendo realizadas simulações sem e com o uso do pulso de laser de femtosegundos com o objetivo de favorecer a quebra das ligações M-H (M = C, Si, Ge ou Sn). Todas as simulações foram realizadas utilizando um esquema baseado em cálculos ab initio de dinâmica molecular, onde o movimento dos núcleos atômicos é descrito classicamente, enquanto os elétrons são tratados quanticamente pela Teoria do Funcional de Densidade (DFT). Os resultados das simulações de dinâmica molecular das reações de abstração de hidrogênio no metano mostram que, por esta molécula ser bastante inerte, somente o átomo de flúor é capaz de promover a dissociação da ligação C-H. Para as simulações realizadas na presença da radiação eletromagnética, foi possível observar que o pulso de laser consegue favorecer a abstração de hidrogênio no metano quando a reação acontece com o átomo de hidrogênio ou flúor. Os resultados das simulações de dinâmica molecular para a reação de abstração de hidrogênio no silano mostram que tanto o átomo de flúor quanto o de hidrogênio são capazes de promover a captura do átomo de hidrogênio promovendo a quebra da ligação Si-H. No caso da reação de abstração de hidrogênio na molécula de silano por átomo de cloro, a quebra efetiva da ligação Si-H não acontece. Nas simulações com a radiação eletromagnética pulsada observa-se que foi possível favorecer ainda mais as reações de abstração de hidrogênio no silano por átomos de flúor e hidrogênio, além de tornar efetiva a ruptura da ligação Si-H na reação com o átomo de cloro. As ligações químicas Ge-H e Sn-H nas moléculas de GeH4 e SnH4 conseguiram ser quebradas facilmente nas reações de abstração de hidrogênio por átomos de hidrogênio, flúor e cloro. Quanto ao átomo de iodo, este não foi capaz de promover a reação de abstração de hidrogênio nas moléculas de germano e estanano, mesmo na presença do pulso de laser de femtosegundos.
18

Diode-Pumped High-Energy Laser Amplifiers for Ultrashort Laser Pulses The PENELOPE Laser System

Löser, Markus 23 January 2018 (has links) (PDF)
The ultrashort chirped pulse amplification (CPA) laser technology opens the path to high intensities of 10^21 W/cm² and above in the laser focus. Such intensities allow laser-matter interaction in the relativistic intensity regime. Direct diode-pumped ultrashort solid-state lasers combine high-energy, high-power and efficient amplification together, which are the main advantages compared to flashlamp-pumped high-energy laser systems based on titanium-doped sapphire. Development within recent years in the field of laser diodes makes them more and more attractive in terms of total costs, compactness and lifetime. This work is dedicated to the Petawatt, ENergy-Efficient Laser for Optical Plasma Experiments (PENELOPE) project, a fully and directly diode-pumped laser system under development at the Helmholtz–Zentrum Dresden – Rossendorf (HZDR), aiming at 150 fs long pulses with energies of up to 150 J at repetition rates of up to 1 Hz. The focus of this thesis lies on the spectral and width manipulation of the front-end amplifiers, trivalent ytterbium-doped calcium fluoride (Yb3+:CaF2) as gain material as well as the pump source for the final two main amplifiers of the PENELOPE laser system. Here, all crucial design parameters were investigated and a further successful scaling of the laser system to its target values was shown. Gain narrowing is the dominant process for spectral bandwidth reduction during the amplification at the high-gain front-end amplifiers. Active or passive spectral gain control filter can be used to counteract this effect. A pulse duration of 121 fs was achieved by using a passive spectral attenuation inside a regenerative amplifier, which corresponds to an improvement by a factor of almost 2 compared to the start of this work. A proof-of-concept experiment showed the capability of the pre-shaping approach. A spectral bandwidth of 20nm was transferred through the first multipass amplifier at a total gain of 300. Finally, the predicted output spectrum calculated by a numerical model of the final amplifier stages was in a good agreement with the experimental results. The spectroscopic properties of Yb3+:CaF2 matches the constraints for ultrashort laser pulse amplification and direct diode pumping. Pumping close to the zero phonon line at 976nm is preferable compared to 940nm as the pump intensity saturation is significantly lower. A broad gain cross section of up to 50nm is achievable for typical inversion levels. Furthermore, moderate cryogenic temperatures (above 200K) can be used to improve the amplification performance of Yb3+:CaF2. The optical quality of the doped crystals currently available on the market is sufficient to build amplifiers in the hundred joule range. The designed pump source for the last two amplifiers is based on two side pumping in a double pass configuration. However, this concept requires the necessity of brightness conservation for the installed laser diodes. Therefore, a fully relay imaging setup (4f optical system) along the optical path from the stacks to the gain material including the global beam homogenization was developed in a novel approach. Beside these major parts the amplifier architecture and relay imaging telescopes as well as temporal intensity contrast (TIC) was investigated. An all reflective concept for the relay imaging amplifiers and telescopes was selected, which results in several advantages especially an achromatic behavior and low B-Integral. The TIC of the front-end was improved, as the pre- and postpulses due to the plane-parallel active-mirror was eliminated by wedging the gain medium.
19

Développement de la spectroscopie DRASC femtoseconde à sonde à dérive de fréquence pour la thermométrie haute cadence dans les milieux gazeux réactifs / Development of the chirped probe pulse femtosecond coherent anti-Stokes Raman scattering for high-speed temperature measurements in gaseous reactive flowfields

Berthillier, Frédéric 19 December 2017 (has links)
L’étude expérimentale des processus physico-chimiques de la combustion nécessite de disposer de diagnostics non-intrusifs. Le présent manuscrit reporte le développement du diagnostic laser de mesure de température DRASC (Diffusion Raman anti-Stokes Cohérente) en régime d’impulsions laser femtoseconde pour lequel la configuration à sonde à dérive de fréquence (CPP) a permis d’effectuer des mesures instantanées de température à 1kHz. Un travail à la fois théorique, numérique et expérimental a permis d’extraire la température des spectres DRASC instantanés acquis dans des mélanges air/argon (300-600K) et en flamme prémélangée CH4/Air avec une précision de l’ordre de 1% à 2100 K. La validité de ces résultats est obtenues par des confrontations numérique/expérimental pour différentes grandeurs d’influence. Cette étude permettra dans un proche futur d’appliquer le diagnostic DRASC fs CPP dans des flammes turbulentes représentatives d’écoulements réels observés en combustion aéronautique. / The experimental study of the physico-chemical processes of combustion requires the use of non-intrusive diagnostics. This manuscript reports the development of the CARS (Coherent Anti-Stokes Raman Scattering)) laser diagnostic in the femtosecond pulse regime for which the Chirped Pulse Probe (CPP) configuration enabled instantaneous measurements of temperature at 1kHz. A theoretical, numerical and experimental study allowed highlighting the possibility to measure temperature from the data processing of instantaneous DRASC spectra acquired in air/argon mixtures (300-600K) and in premixed flame CH4/Air with an accuracy of 1% at 2100 K. Validity of these results was obtained from numerical/experimental confrontations for different scalar parameters configurations. This study would enable in the near future the application of the CPP fs CARS diagnostic in turbulent flames representative of real flows observed in aeronautical combustion.
20

High-Yield Optical Undulators Scalable to Optical Free-Electron Laser Operation by Traveling-Wave Thomson-Scattering

Steiniger, Klaus 15 December 2017 (has links)
All across physics research, incoherent and coherent light sources are extensively utilized. Especially highly brilliant X-ray sources such as third generation synchrotrons or free-electron lasers have become an invaluable tool enabling experimental techniques that are unique to these kinds of light sources. But these sources have developed to large scale facilities and a demand in compact laboratory scale sources providing radiation of similar quality arises nowadays. This thesis focuses on Traveling-Wave Thomson-Scattering (TWTS) which allows for the realization of ultra-compact, inherently synchronized and highly brilliant light sources. The TWTS geometry provides optical undulators, through which electrons pass and thereby emit radiation, with hundreds to thousands of undulator periods by utilizing pulse-front tilted lasers pulses from high peak-power laser systems. TWTS can realize incoherent radiation sources with orders of magnitude higher photon yield than established head-on Thomson sources. Moreover, optical free-electron lasers (OFELs) can be realized with TWTS if state-of-the-art technology in electron accelerators and laser systems is utilized. Tilting the laser pulse front with respect to the wavefront by half of this interaction angle optimizes electron and laser pulse overlap by compensating the spatial offset between electrons and the laser pulse-front at the beginning of the interaction when the electrons are far from the laser pulse axis. The laser pulse-front tilt ensures continuous overlap between electrons and laser pulse while the electrons cross the laser pulse cross-sectional area. Thus the interaction distance can be controlled in TWTS by the laser pulse width rather than laser pulse duration. Utilizing wide, petawatt class laser pulses allows realizing thousands of optical undulator periods. This thesis will show that TWTS OFELs emitting ultraviolet radiation are realizable today with existing technology for electron accelerators and laser systems. The requirements on electron bunch and laser pulse quality of these ultraviolet TWTS OFELs are discussed in detail as well as the corresponding requirements of TWTS OFELs emitting in the soft and hard X-ray range. These requirements are derived from scaling laws which stem from a self-consistent analytic description of the electron bunch and radiation field dynamics in TWTS OFELs presented within this thesis. It is shown that these dynamics in TWTS OFELs are qualitatively equivalent to the electron bunch and radiation field dynamics of standard free-electron lasers which analytically proves the applicability of TWTS for the realization of an optical free-electron laser. Furthermore, experimental setup strategies to generate the pulse-front tilted TWTS laser pulses are presented and designs of experimental setups for the above examples are discussed. The presented setup strategies provide dispersion compensation, required due to angular dispersion of the laser pulse, which is especially relevant when building compact, high-yield hard X-ray TWTS sources in large interaction angle setups. An example of such an enhanced Thomson source by TWTS, which provides orders of magnitude higher spectral photon density than a comparable head-on interaction geometry, is presented, too. / Inkohärente und kohärente Lichtquellen werden in allen Feldern der physikalischen Forschung intensiv eingesetzt. Im Besonderen ermöglichen hoch-brilliante Röntgenquellen, wie Synchrotrone der dritten Generation und Freie-Elektronen Laser, einzigartige Experimentiertechniken wodurch diese zu unverzichtbaren Werkzeugen wurden. Sie sind allerdings auch im Umfang zu Großforschungseinrichtungen herangewachsen. Um den hohen Bedarf an hoch-brillianten Lichtquellen zu decken, besteht daher die Notwendigkeit neuartige und kompakte Quellen zu entwickeln welche auf dem Maßstab eines Labors realisierbar sind. Diese Dissertation widmet sich der Traveling-Wave Thomsonstreuung (TWTS) welche die Realisierung ultra-kompakter, intrinsisch synchronisierbarer und hoch-brillianter Röntgenquellen ermöglicht. TWTS ist eine Methode der Streuung von Laserpulsen an relativistischen Elektronen. Dabei durchquert ein Elektronenpuls mit nahezu Lichtgeschwindigkeit einen Laserpuls. Während der Durchquerung beginnen die Elektronen im Feld des Laserpulses zu oszillieren wobei sie Strahlung emittieren. Die ausgesandte Strahlung besitzt eine deutlich kürzere Wellenlänge als das Laserfeld aufgrund der hohen Elektronengeschwindigkeit und der damit verbundenen großen Dopplerverschiebung. Das besondere an TWTS ist, dass Elektronen- und Laserpropagationsrichtung einen Winkel einschließen sowie pulsfrontverkippte Hochleistungslaserpulse eingesetzt werden. Dadurch können um Größenordnungen längere Interaktionsdistanzen als in herkömmlichen frontalen Thomsonstreuungsanordnungen erreicht werden. TWTS ermöglicht dadurch die Realisierung optischer Freie-Elektronen Laser (OFEL) und inkohärenter Strahlungsquellen mit einer um Größenordnungen erhöhten Photonenausbeute gegenüber Thomsonstreuungsquellen in frontalen Interaktionsanordungen. Werden modernste Elektronenbeschleuniger und Lasersysteme genutzt, dann ist der Betrieb optischer Freie-Elektronen Laser bereits heute mit TWTS möglich. Das wird in der Dissertation am Beispiel eines Vakuumultraviolettstrahlung emittierenden TWTS OFEL gezeigt. Dessen Anforderungen an die Qualität der Elektronen- und Laserpulse werden im Detail in der Arbeit besprochen sowie weitere Beispiele weicher und harter Röntgenstrahlung emittierender TWTS OFEL präsentiert. Diese Anforderungen werden anhand von Skalierungsvorschriften ermittelt welche aus einer selbstkonsistenten, 1.5 dimensionalen Theorie zur Wechselwirkung zwischen Elektronen und Laserfeld in TWTS abgeleitet sind. Sowohl die Theorie zur Wechselwirkung als auch die Ableitung der Skalierungsvorschriften sind Teile dieser Dissertation. Eine wichtige Erkenntnis der Theorie ist die qualitative Äquivalenz von Elektronen- und Strahlungsfeldbewegungsgleichungen in TWTS zu denen herkömmlicher Freie-Elektronen Laser. Das beweist analytisch die Möglichkeit zur Realisierung eines OFEL mit TWTS. Einen weiteren wichtigen Teil dieser Dissertation bildet die Arbeit zur Generierung der Laserpulse mit verkippter Pulsfront. Optische Aufbauten zur Verkippung der Laserpulsfront werden vorgestellt und für einige der präsentierten TWTS OFEL ausführlich dargelegt. Die Aufbauten verkippen nicht nur die Laserpulsfront sondern gewähren gleichzeitig Kontrolle über die Laserpulsdispersionen. Dadurch kann während der gesamten Interaktionen eine ausreichend hohe Qualität des Laserfeldes sichergestellt werden, was für TWTS OFEL und inkohärente TWTS Lichtquellen mit großem Interaktionswinkel unbedingt notwendig ist. Ein Beispiel einer inkohärenten TWTS Lichtquelle wird ebenfalls präsentiert. Diese emittiert Strahlung mit einer um Größenordnungen höheren spektrale Photonendichte als eine herkömmliche Thomsonquelle in einer frontalen Streuanordnung mit vergleichbaren Laser- und Elektronenpulsen.

Page generated in 0.0782 seconds