• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 10
  • 9
  • 9
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 170
  • 170
  • 130
  • 46
  • 30
  • 27
  • 23
  • 19
  • 18
  • 18
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

New approaches for laser pulse generation and signal processing using optical phase modulation.

January 2003 (has links)
Chan Sze-wai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.vi / Table of contents --- p.vii / List of figure --- p.xi / Chapter 1. --- Introduction --- p.1 / Chapter 1.1. --- Optical non-linearity of fiber and semiconductor optical amplifier (SOA) --- p.2 / Chapter 1.2. --- Applications on optical non-linearity --- p.3 / Chapter 1.2.1. --- Wavelength tunable pulse generation --- p.3 / Chapter 1.2.2. --- Wavelength conversion --- p.5 / Chapter 1.2.3. --- All-optical NRZ to RZ format conversion --- p.7 / Chapter 1.2.4. --- All-optical pulse compression and reshaping --- p.9 / Chapter 1.3. --- Overview --- p.11 / Reference --- p.13 / Chapter 2. --- Principles and Theories --- p.16 / Chapter 2.1. --- Optical non-linearity --- p.17 / Chapter 2.1.1. --- Self-phase modulation (SPM) --- p.19 / Chapter 2.1.2. --- Cross-phase modulation (XPM) --- p.22 / Chapter 2.2. --- Principle of dispersion tuning --- p.25 / Chapter 2.2.1. --- Nonlinear optical loop mirror (NOLM) incorporated with SOA --- p.29 / Chapter 2.2.2. --- Principle of compensated dispersion tuning in harmonically mode-locked fiber ring --- p.33 / Chapter 2.3 --- Principle of double-pass dispersion-shifted fiber (DSF) based on SPM --- p.36 / Reference --- p.38 / Chapter 3. --- Preliminary experimental studies on spectral broadeningin SOAs and DSF by XPM --- p.39 / Chapter 3.1. --- XPM in SOA --- p.40 / Chapter 3.2. --- XPM in DSF --- p.44 / Chapter 3.3. --- Comparison in XPM performance between SOA and DSF --- p.47 / Chapter 4. --- Harmonically mode-locked fiber laser with an optically selectable wavelength --- p.48 / Chapter 4.1. --- Introduction to wavelength tunable pulse generation and basic idea --- p.49 / Chapter 4.2. --- Experimental details --- p.51 / Chapter 4.3. --- Results and discussions --- p.55 / Chapter 4.4. --- Conclusion --- p.61 / Reference --- p.62 / Chapter 5. --- Spectral broadening by XPM in DSF for wavelength conversion --- p.64 / Chapter 5.1. --- Overview of wavelength conversion --- p.65 / Chapter 5.2. --- Description of experimental setup --- p.67 / Chapter 5.3. --- Optical spectral analysis and eye patterns --- p.69 / Chapter 5.4. --- Data Analysis --- p.72 / Chapter 5.5. --- Conclusion --- p.75 / Reference --- p.76 / Chapter 6. --- Spectral filtering from a cross-phase modulated signal for all- optical NRZ to RZ format conversion --- p.77 / Chapter 6.1. --- Importance of format conversion --- p.78 / Chapter 6.2. --- Principle and explanation of experimental setup --- p.79 / Chapter 6.3. --- Experimental results and bit error rate test --- p.81 / Chapter 6.4. --- Conclusion --- p.87 / Reference --- p.88 / Chapter 7. --- Spectral filtering from a cross-phase modulated signal for all- optical pulse compression and reshaping in a DSF --- p.90 / Chapter 7.1. --- Pulse compression by XPM / Chapter 7.1.1. --- Introduction --- p.91 / Chapter 7.1.2. --- Details of experimental setup --- p.93 / Chapter 7.1.3. --- Experimental results / Chapter 7.1.3.1. --- Output spectra and eye patterns --- p.95 / Chapter 7.1.3.2. --- Data analysis and discussions --- p.97 / Chapter 7.2. --- Pulse restoration by XPM / Chapter 7.2.1. --- Details of experiment --- p.99 / Chapter 7.2.2. --- Output eye patterns --- p.101 / Chapter 7.3. --- Conclusion for pulse compression and reshaping by XPM --- p.102 / Reference --- p.103 / Chapter 8. --- Spectral filtering from a self-phase modulated signal with double-pass DSF for all-optical pulse compression and reshaping --- p.104 / Chapter 8.1. --- Introduction to pulse compression by SPM and basic idea of double-pass DSF --- p.105 / Chapter 8.2. --- Schematic diagram of experimental setup --- p.107 / Chapter 8.3. --- Experimental Results and discussions / Chapter 8.3.1. --- Results measured by optical spectrum analyzer and oscilloscope --- p.109 / Chapter 8.3.2. --- Data comparison with conventional SPM and bit-error rate test --- p.113 / Chapter 8.4. --- Conclusion --- p.117 / Reference --- p.118 / Chapter 9. --- Conclusion and future works / Chapter 9.1. --- Conclusion --- p.119 / Chapter 9.2. --- Possible future works --- p.122 / Appendix / List of publications --- p.A-l
52

New schemes of picosecond pulse generation with broad tunability in wavelength and repetition rate. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Active mode locking is one of the simplest ways to generate picosecond pulses at gigahertz repetition rates. In my works, I demonstrate the generation of picosecond pulses with a center-wavelength spanning from 1489nm to 1589nm using a polarization maintaining fiber loop mirror filter (PMF-LMF) in a mode-locked semiconductor optical amplifier (SOA) ring laser. By applying the SOA gain shifting technique and with the help of the controllable transmission ratio of the PMF-LMF, the tuning range of the output wavelength can be extended. By applying the technique of dispersion tuning, electrical wavelength tuning can be achieved across a range of 100nm. / Compared to the active mode-locking method, the regenerative mode-locking is very convenient because it does not require any external source for modulation and is proved to be more robust against fluctuations in ambient temperature. We demonstrate a 10-GHz regeneratively mode-locked fiber laser using a PMF-LMF. The operating frequency is determined by the free-spectral-range of the PMF-LMF and the component is extracted optically from the ring laser output. / In addition, we also demonstrate a simple technique to generate wavelength tunable picosecond pulses at adjustable repetition rate without using electrical or optical RF filter to extract the radio frequency (RF). The RF signal for mode locking is generated from a Fabry-Perot laser diode (FP-LD) under optical injection. The output frequency can be varied by adjusting the biasing current of the FP-LD. (Abstract shortened by UMI.) / Picosecond optical pulse sources with broad tunability and various repetition rates are key elements for applications in wavelength- and time-division multiplexed optical transmission systems. Mode-locking is one of the main techniques for the generation of optical pulses with high repetition rate picosecond pulse trains. This thesis presents our research efforts in high repetition rate optical pulse generation using active and regenerative mode-locking techniques, and a self-starting approach. We also demonstrate the application of harmonic mode locking in all-optical clock recovery from NRZ data. / Tang Wing Wa. / "August 2005." / Adviser: C. T. Shu. / Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 4015. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
53

Distributed feedback dye-doped sol-gel silica lasers. / CUHK electronic theses & dissertations collection

January 2001 (has links)
Zhu Xiao Lei. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 116-121). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
54

Ultrashort optical pulses from laser diode and erbium doped fibers.

January 1997 (has links)
Tong Yu Chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references. / Abstract --- p.i / Acknowledgments --- p.ii / Table of Contents --- p.iii / Chapter (1) --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Overview of the Thesis --- p.2 / References --- p.4 / Chapter (2) --- Review of Ultrashort Pulse Generation and Pulsewidth Measurement --- p.5 / Chapter 2.1 --- Introduction --- p.5 / Chapter 2.2 --- Q-switching --- p.5 / Chapter 2.3 --- Gain-switching --- p.8 / Chapter 2.4 --- Mode-locking --- p.11 / Chapter 2.4.1 --- Active mode-locking --- p.12 / Chapter 2.4.2 --- Passive mode-locking --- p.13 / Chapter 2.5 --- Optical Pulse Compression --- p.15 / Chapter 2.6 --- Pulsewidth Detection Methods --- p.18 / Chapter 2.6.1 --- Streak camera --- p.18 / Chapter 2.6.2 --- Photodetector and sampling oscilloscope --- p.20 / Chapter 2.6.3 --- Nonlinear autocorrelator --- p.21 / Chapter 2.6.4 --- Other techniques --- p.24 / References --- p.25 / Chapter (3) --- Erbium Doped Fiber Amplifier and Active Mode-locking --- p.28 / Chapter 3.1 --- Introduction --- p.28 / Chapter 3.2 --- Erbium Doped Fiber Amplifier --- p.28 / Chapter 3.2.1 --- Background --- p.28 / Chapter 3.2.2 --- Experiment --- p.31 / Chapter 3.3 --- Additive Pulse Mode-locking --- p.35 / Chapter 3.4 --- Active Mode-locking --- p.37 / Chapter 3.4.1 --- Background --- p.37 / Chapter 3.4.2 --- Experiment and result --- p.38 / Chapter 3.4.3 --- Discussion --- p.43 / Chapter 3.5 --- Chapter Summary --- p.46 / References --- p.46 / Chapter (4) --- Passive Mode-locking of Erbium Doped Fiber Laser --- p.49 / Chapter 4.1 --- Introduction --- p.49 / Chapter 4.2 --- Background --- p.49 / Chapter 4.3 --- Experimental Setup --- p.51 / Chapter 4.4 --- Initialing Mode-locking --- p.54 / Chapter 4.5 --- Experimental Result --- p.55 / Chapter 4.5.1 --- Real time pulse train --- p.55 / Chapter 4.5.2 --- Autocorrelation trace --- p.57 / Chapter 4.5.3 --- RF spectrum --- p.58 / Chapter 4.5.4 --- Optical spectrum --- p.59 / Chapter 4.5.5 --- Time-bandwidth product --- p.60 / Chapter 4.5.6 --- Output power --- p.61 / Chapter 4.6 --- Discussion --- p.63 / Chapter 4.6.1 --- Linear pulse broadening --- p.63 / Chapter 4.6.2 --- Cavity oscillation --- p.65 / Chapter 4.6.3 --- Pump power hysteresis --- p.66 / Chapter 4.6.4 --- Sideband generation --- p.67 / Chapter 4.6.5 --- Spectral distortion --- p.68 / Chapter 4.7 --- Chapter Summary --- p.71 / References --- p.72 / Chapter (5) --- Application of Ultrashort Optical Pulses from Figure Eight Laser --- p.74 / Chapter 5.1 --- Introduction --- p.74 / Chapter 5.2 --- Dispersion Measurement --- p.74 / Chapter 5.2.1 --- Introduction --- p.74 / Chapter 5.2.2 --- Background --- p.75 / Chapter 5.2.3 --- Experiment and result --- p.76 / Chapter 5.2.4 --- Discussion and conclusion --- p.80 / Chapter 5.3 --- Time Domain Spectral Estimation --- p.82 / Chapter 5.3.1 --- Introduction --- p.82 / Chapter 5.3.2 --- Background --- p.82 / Chapter 5.3.3 --- Experiment and result --- p.83 / Chapter 5.3.4 --- Discussion --- p.88 / Chapter 5.4 --- Ultrashort Pulse Amplification --- p.89 / Chapter 5.4.1 --- Introduction --- p.89 / Chapter 5.4.2 --- Background --- p.89 / Chapter 5.4.3 --- Experiment and result --- p.92 / Chapter 5.4.4 --- Discussion and conclusion --- p.95 / References --- p.96 / Chapter (6) --- Picosecond Pulse Generation from Semiconductor Laser Diodes --- p.99 / Chapter 6.1 --- Introduction --- p.99 / Chapter 6.2 --- Gain-switching --- p.99 / Chapter 6.2.1 --- Experiment using commercial laser diodes --- p.99 / Chapter 6.2.2 --- Repetition rate multiplication --- p.102 / Chapter 6.2.3 --- Pulse compression with HDSF --- p.107 / Chapter 6.2.4 --- Fiber loop compressor --- p.110 / Chapter 6.3 --- Active or Hybrid Mode-locking --- p.112 / Chapter 6.3.1 --- Introduction --- p.112 / Chapter 6.3.2 --- Laser structure --- p.113 / Chapter 6.3.3 --- Experiment and result --- p.113 / Chapter 6.3.4 --- Discussion and conclusion --- p.116 / Chapter 6.4 --- Amplifier Modulation --- p.117 / Chapter 6.4.1 --- Introduction --- p.117 / Chapter 6.4.2 --- Experiment and result --- p.118 / Chapter 6.5 --- Wavelength Tuning --- p.120 / Chapter 6.5.1 --- Introduction --- p.120 / Chapter 6.5.2 --- Experiment and result --- p.121 / Chapter 6.5.3 --- Conclusion --- p.123 / Chapter 6.6 --- Chapter Summary --- p.124 / References --- p.124 / Chapter (7) --- Conclusion --- p.126 / Chapter 7.1 --- Summary of the Research --- p.126 / Chapter 7.1.1 --- Fiber lasers --- p.126 / Chapter 7.1.2 --- Diode lasers --- p.128 / Chapter 7.2 --- Further Study --- p.129 / Appendix I Project Instrumentation --- p.A-l / Appendix II Curve Fitting Program for the SHG Autocorrelation Trace --- p.A-8 / Appendix III Experiment Setup of Figure Eight Laser --- p.A-12 / "Appendix IV Curve Fitting Program for Determination of Second Order Dispersion, dD/dλ" --- p.A-14 / Appendix V 1.3 μm two sections DFB/TA Laser Diode Chips --- p.A-17 / Appendix VI Publication List --- p.A-l9
55

Ultra-short pulsed laser surface processing and decontamination

Wang, Xiaoliang. January 2008 (has links)
Thesis (M.S.)--Rutgers University, 2008. / "Graduate Program in Mechanical and Aerospace Engineering." Includes bibliographical references (p. 63-67).
56

Pulsed infrared laser ablation and clinical applications /

Chan, Kin Foong, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 223-242). Available also in a digital version from Dissertation Abstracts.
57

Measurement of complex ultrashort laser pulses using frequency-resolved optical gating

Xu, Lina. January 2009 (has links)
Thesis (Ph.D)--Physics, Georgia Institute of Technology, 2010. / Committee Chair: Rick Trebino; Committee Member: Ahmet Erbil; Committee Member: John Buck; Committee Member: Stephen Ralph; Committee Member: Zhigang Jiang. Part of the SMARTech Electronic Thesis and Dissertation Collection.
58

Controlling laser high-order harmonic generation using weak counter-propagating light /

Voronov, Sergei Leonidovich, January 2003 (has links) (PDF)
Thesis (Ph. D.)--Brigham Young University. Dept. of Physics and Astronomy, 2003. / Includes bibliographical references (p. 127-137).
59

Investigation of plasmonic response of metal nanoparticles to ultrashort laser pulses

Polyushkin, Dmitry Konstantinovich January 2013 (has links)
In this thesis the interaction of ultrashort laser pulses with metal nanostructures is investigated via two different phenomena: coherent acoustic oscillations of nanoparticles and generation of THz pulses on metal surfaces. Both of these effects rely on the collective oscillations of free conduction electrons in metal surfaces, plasmons. The field of plasmonics gained a great interest in the last twenty years due to the unique properties of these surface modes. It is the effects of the resonant response of plasmonic structures to incident electromagnetic wave, in particular, in visible and infrared bands and the concentration of the electromagnetic field in small subwavelength regions with significant enhancement of the incident field that make plasmonics so attractive for various applications, such as biochemical sensing, enhanced fluorescence, surface-enhanced Raman scattering, and second harmonic generation, amongst others. Investigation of the coherent particle vibrations is performed using the pump-probe technique which allows measurement of the transient transmission signals. The expansion and subsequent contraction of the nanoparticle following the ultrashort laser pulse excitation lead to a shift of the plasmon band which can be traced by transient spectroscopy. We have investigated the effect of the particle thickness on the frequency of the fundamental vibrational mode. In addition, we measured the vibrational particle response during the particle shape deformation, both symmetrical and asymmetrical. Exploration of the THz generation phenomena on plasmonic structures was performed using THz time-domain spectroscopy, the method which allows tracing of the generated THz field in the time-domain. We were able for the first time to measure the THz pulses generated from arrays of metal nanoparticles. Our observations verify the role of the particle plasmon mode in the generation of THz pulses. In addition, by exploring the dependence of the THz emission on the femtosecond pulse intensity we showed a high nonlinearity in the THz generation mechanism. The experimental results were assessed in the context of a recently proposed model where the THz radiation is generated via the acceleration of the ejected electrons by ponderomotive forces. To reveal another proposed mechanism of the THz generation from plasmonic structures, namely optical rectification, we investigated the THz generation and electron emission from the arrays of nanoparticles and nanoholes. Our results suggest that both mechanisms may contribute to generation of THz pulses from the same sample under different illumination conditions. In addition to periodic arrays of nanoparticles and nanoholes, THz generation from random metal-dielectric films was investigated. The microstructuring of such films allowed selective THz frequency generation which was explained by a model of dipole THz emitters. In addition, the effects of low temperature and pressure on the THz generation efficiency were investigated.
60

Single-shot measurements of complex pulses using frequency-resolved optical gating

Wong, Tsz Chun 13 January 2014 (has links)
Frequency-resolved optical gating (FROG) is the standard for measuring femtosecond laser pulses. It measures relatively simple pulses on a single-shot and complex pulses using multi-shot scanning and averaging. However, experience from intensity autocorrelation suggests that multi-shot measurements may suffer from a coherent artifact caused by instability in the laser source. In this thesis, the coherent artifacts present in modern pulse measurement techniques are examined and single-shot techniques for measuring complex pulse(s) are proposed and demonstrated. The study of the coherent artifact in this work shows that modern pulse measurement techniques also suffer from coherent artifacts and therefore single-shot measurements should be performed when possible. Here, two single-shot experimental setups are developed for different scenarios. First, an extension of FROG is developed to measure two unknown pulses simultaneously on a single-shot. This setup can measure pulses that have very different center wavelengths, spectral bandwidths, and complexities. Second, pulse-front tilt is incorporated to extend the temporal range of single-shot FROG to tens of picoseconds which traditionally can only be attained by multi-shot scanning. Finally, the pulse-front tilt setup is modified to perform a single-shot measurement of supercontinuum, one of the most difficult pulses to measure due to its long temporal range, broad spectral bandwidth, and low pulse energy.

Page generated in 0.0997 seconds