Spelling suggestions: "subject:"laser spectroscopy"" "subject:"faser spectroscopy""
271 |
The collision dynamics of OH(A)+H2Seamons, Scott Andrew January 2015 (has links)
This thesis presents a joint experimental and theoretical study of a bimolecular collision between OH(A) and H<sub>2</sub> diatoms. The study focuses on the relationship between the initial, <b><i>j</i></b>, and final rotational angular momentum, <b><i>j'</i></b>. This relationship is explored from both a scalar point of view by measuring rotational energy transfer (RET), and a vectorial viewpoint by considering the collisional depolarisation. The experimental technique used in this investigation, Zeeman quantum beat spectroscopy, is first demonstrated by applying it to the determination of the lab-frame orientation of OH(X) photofragments following the photolysis of H<sub>2</sub>O<sub>2</sub>. The H<sub>2</sub>O<sub>2</sub> is photolysed by circularly-polarised light at 248 nm, and Zeeman quantum beat spectroscopy probes the angular momentum orientation as a function of the photofragment spin-rotation level. The results of this experiment are compared with orientation parameters predicted by a simulation that couples the rotation of the parent molecule to the torsional motion during bond cleavage. The calculations from the model agree qualitatively with those from the experiment. The Zeeman quantum beat spectroscopy technique is then used to monitor the evolution of angular momentum polarisation of OH(A) radicals during collisions with H<sub>2</sub>. The technique allows for the determination of depolarisation cross sections for oriented and aligned distributions, as a result of collisions with H<sub>2</sub>. Alongside this, cross sections for collisional quenching to non-reactive OH(X)+H<sub>2</sub> and reactive H<sub>2</sub>O+H products are determined. By resolving the fuorescence with a monochromator the contributions to depolarisation from elastic collisions (the elastic depolarisation cross sections) are measured alongside cross sections for RET. Cross sections for total depolarisation and rotational energy transfer demonstrate only weak dependence on the rotational quantum number of the OH(A) radical, <i>N</i><sub>OH</sub>. Competing quenching processes that fall with <i>N</i><sub>OH</sub> are likely a considerable cause of this weak dependence. Furthermore, the polarisation of the angular momentum of OH(A) is randomised following RET. The elastic depolarisation cross sections make only a small contribution to the depolarisation and fall with increasing <i>N</i><sub>OH</sub>. Collectively these trends have not been seen previously in similar studies on OH(A) collisions with atomic colliders. For the theoretical calculations, a four-atom quasi-classical trajectory (QCT) method has been developed, utilising Lagrangian multipliers to fix the OH(A) and H<sub>2</sub> bonds. The calculations demonstrate that collisions involving the formation of complexes that survive for several rotational periods are prevalent in this collision system, and that these lead to large amounts of depolarisation. The calculations also demonstrate that RET in the H<sub>2</sub> diatom supports higher levels of RET in OH(A) than seen in previous triatomic systems. Additionally, when one diatom is depolarised the accompanying diatom is typically also depolarised. These trends, at least in part, are owed to the highly attractive and anisotropic potential energy surface (PES) describing the interaction. The QCT calculations overestimate the experimentally-measured cross sections by more than a factor of 2. The calculations are adiabatic and do not account for the non-adiabatic activity associated with this collision system, and this is likely one cause of the discrepancies. In an attempt to further account for this overestimation, alternative angular momentum binning approaches for the QCT calculations are developed, but with limited success. Further exploration of the topology of the PES used in the calculations suggests that inadequacies in this surface are a major contributor to the discrepancies.
|
272 |
Vliv atmosféry na laserovou ablaci materiálů / Impact of the atmosphere on laser ablation of mattersČerná, Svatava January 2020 (has links)
This thesis deals with a general overview of laser-induced breakdown spectroscopy - ablation of material and plasma formation when a change of the surrounding environment occurs. The aim is to establish ideal conditions for improving detection, which is difficult for some elements when the measurement takes place in the ambient atmosphere. This is the reason why we change the ambient conditions, the gas (air, helium, argon) and its pressure. Buffer gases (helium, argon) influence the development of the material ablation and quality of generated plasma. That is why we inspect the changes in the signal according to particular atmospheres (signal change in buffer gases compared to the ambient atmosphere). The first part of the thesis presents the principle and physical nature of laser ablation with a brief search of experiments performed so far for similar purposes. Based on this search we determine conclusions about the influence of buffer gasses and pressure on the detection used gasses. In the second part of the work, the controlled experiment is presented, which consisted of the detection of spectral lines of fluorine and potassium, see chapter 5.6 and molecular transitions of calcium fluoride, see chapter 5.10. In a controlled experiment, we established two assumptions. The first assumption is the influence of the inert gas atmosphere, which should significantly improve the detection of fluorine and potassium compared to the air atmosphere. We confirmed this finding only for the argon atmosphere. In contrast, in the helium atmosphere, the detection of none of the elements improved. The second assumption is the effect of reducing the ambient pressure, which in combination with an inert gas should allow the detection of fluorine even at low concentrations in the sample. We consider the measured glass disk in chapter 5.7 to be such a sample. This assumption is not confirmed, as the increased intensity of the fluorine spectral line does not manifest itself in any way when the pressure in the vacuum chamber decreases. Finally, in chapter 7 from the results of individual parts of the experiment, the most suitable conditions for the future detection of the measured substances were proposed: fluorine, potassium and calcium fluoride molecules.
|
273 |
Jet-Cooled Molecular Spectroscopy from the Microwave to the UltravioletPiyush Mishra (8028629) 25 November 2019 (has links)
The present thesis shows how versatile and important the field of gas-phase spectroscopy under supersonic expansion conditions can be to understand fundamental intermolecular and intramolecular interactions. We have employed spectroscopic techniques over a very broad range spanning from microwave (2-18 GHz), through infrared (2600-4000 cm-1) and ultraviolet (350-250 nm) region, studying therotational, vibrational and electronic properties,respectively. These techniques use either chirped-pulse based (broadband rotational spectroscopy) or laser based methods (vibrational and electronic spectroscopy), and their usage depends on the types of information of particular interest and the chemical system requirements of specific techniques. The analytes are brought into the gas phase and supersonically cooled to their zero-point vibrational level to perform rotational and vibrationallyresolved IR/UV spectroscopy, including conformer-specific techniques. The variety of small organic molecular systemsstudied include phenyl-containing hydrocarbons, water containing clusters, heteroatom containing organic molecules with and without phenyl ring, fused aromatic molecules, bichromophoric molecules and pyrolysis reaction intermediates. Apart from gaining invaluable fundamental knowledge of the various interactions, we also observe interesting quantum-physical phenomena like tunneling and large amplitude motions that provide further insight into the molecular world.
|
274 |
Molecular insights into the redox of atmospheric mercury through laser spectroscopyCohen, Rongrong Wu 09 December 2022 (has links) (PDF)
The widespread pollution of mercury motivates research into its atmospheric chemistry and transport. Gaseous elemental mercury (Hg(0)) dominates mercury emission to the atmosphere, but the rate of its oxidation to mercury compound (Hg(II)) plays a significant role in controlling where and when mercury deposits to ecosystems. Atomic bromine is regarded as the main oxidant for Hg(0) oxidation, known to initiate the oxidation via a two-step process in the atmosphere – formation of BrHg (R1) and subsequent reactions of BrHg with abundant free radicals Y, i.e., NO2, HOO, etc. (R2), where the reaction of BrHg +Y could also lead to the reduction of Hg(I) to Hg(0) (R3). A different oxidation pathway of BrHg + O3 (R4) is currently regarded as the dominant Hg(II) oxidation pathway in the atmosphere. Hg + Br + M → BrHg + M (R1) BrHg + Y + M → BrHgY + M (R2) BrHg + Y → BrY +Hg (R3) BrHg + O3 → BrHgO + O2 (R4) While the rate constants of R1 have been experimentally measured a decade ago, this research focuses on the experimental kinetic studies on the reaction of R2-R4 to better assist the efforts to predict how emission reductions impact the spatial distribution of mercury entry into ecosystems. The kinetic studies of BrHg redox chemistry are conducted by utilizing laser photolysis-laser induced fluorescence-cavity ringdown spectroscopy (LP-LIF-CRDS) systems, where BrHg radicals are generated via laser photolysis and monitored in the reaction via LIF and CRDS measurements. We report mainly on our experimental kinetic studies of the redox reactions of BrHg with relatively abundant trace gases such as NO2, NO, O3, O2, and VOCs, especially on the temperature and pressure dependence of the reaction rate constants using our LP-LIF system. We present the development and the characterization of a novel LP-CRDS system, which is a powerful tool to study reactions during which fluorescence quenching interferes with LIF measurement, and to study the spectroscopy of Hg(I) and Hg(II) compounds.
|
275 |
Gas-phase detection methods using diode lasersBaran, Stuart George January 2009 (has links)
Diode lasers are a convenient and economical source of near-infrared radiation, which may usefully be applied to a host of different sensitive detection methods; this thesis presents novel extensions of these methods, making use of the favourable characteristics of this type of light source. The first part of this thesis details the development of an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) apparatus, including the development of the optical system, the sample handling, and the electronics for feedback phase control. A preliminary demonstration of the system is reported, presenting the detection of atmospheric water absorptions close to 1596 nm. Optimisation and application of the OF-CEAS spectrometer are then demonstrated, after which the spectrometer is applied to the sensitive detection of carbon dioxide absorptions suitable as a diagnostic aid in identifying Heliobacter pylori infection. A time-normalised α-min value of 5.8 × 10<sup>−9</sup> cm<sup>−1</sup>s<sup>1/2</sup> was measured for these spectra. Further optimisation of the system leads to an ultimate detection sensitivity of 1.42 × 10<sup>−9</sup> cm<sup>−1</sup>s<sup>1/2</sup>, measured on absorption transitions in acetylene close to 1532 nm. In order further to characterise the performance of the OF-CEAS system, analogous experiments are presented using the OF-CEAS setup and a standard diode-laser cavity-enhanced absorption spectroscopy (CEAS) apparatus. Detection is carried out on the P(6) line of the ν<sub>1</sub> + ν<sub>3</sub> vibrational band of the mixed isotopologue of acetylene, <sup>12</sup>-C<sup>13</sup>-CH<sub>2</sub>. Direct comparison is made between the sensitivities of the two methods, and in light of this the suitability of each technique for detection in different environments is considered. The well-characterised and consistent frequency scale which is inherent to the OF-CEAS technique is then applied to a line shape analysis for the presented absorption spectra. Pressure-broadening coefficients are determined for selected absorptions in the ν<sub>1</sub> + ν<sub>3</sub> band of acetylene. In spite of the low resolution associated with this technique, this accurate frequency scaling allows observation of subtle line shape effects such as Dicke collisional narrowing using the data presented in Chapter 3 for the R(60) line in the 3ν<sub>1</sub> + ν<sub>3</sub> vibrational band of CO<sub>2</sub>. These effects are quantified through use of a Galatry fit to each absorption spectrum. The statistical significance associated with the use of such a model, and the physical meaning of the results, are examined and discussed. An alternative strategy for increasing the sensitivity of a diode-laser-based gas monitoring technique lies in moving detection to the mid-infrared region, where the absorption cross-sections are generally larger. With this motivation, difference frequency generation is presented, to produce radiation close to 3.5 µm which is then applied to a series of different enhanced spectroscopy techniques. The optimal sensitivity, of 32 ppb NO2 at 45 Torr total sample pressure, was achieved using wavelength modulation spectroscopy. The different techniques are compared and possible improvements to them are put forward. Finally, proof-of-principle work is presented seeking to combine the enhanced circulating power associated with the optical-feedback-locked techniques and non-linear optical techniques to move detection to a more favourable spectral region. Light close to 429 nm is generated by second harmonic generation in a crystal of potassium niobate, with resonance-enhancement afforded by a feedback V-cavity of the sort employed in OF-CEAS. The potential of such a system for diode-laser-based generation of blue and ultraviolet light is demonstrated and discussed, along with improvements that might be implemented to increase the efficiency of the system.
|
276 |
Quantum cascade laser spectroscopy : developments and applicationsWalker, Richard James January 2011 (has links)
This thesis presents work examining the characteristics and applicability of quantum cascade lasers. An introduction is given explaining both the desire for a widely tunable, narrow bandwidth device working in the midinfrared, as well as detailing the ways in which quantum cascade lasers (QCLs) fulfill these requirements. The development and manufacture of QCLs are then discussed. The experimental section of this thesis is then split into three parts. Chapter 2 concerns the characterisation and application of several pulsed QCLs. The intrapulse mode of operation is employed and the effect of the resulting rapid frequency chirp upon molecular spectra is investigated in the form of rapid passage signals. The evolution of said rapid passage signals is then investigated as a function of chromophore pressure and identity, with different QCLs, chirp rates, and optical path lengths. The prospect of producing population transfer with chirped lasers is discussed. Chapters 3, 4, and 5 are then concerned with the application and characterisation of continuous wave QCLs. In these chapters a widely tunable commercially produced EC-QCL is utilised as well as two DFB QCLs, one of which is used in tandem with a home-made mount and temperature controller. In Chapter 3 a number of sensitive detection techniques are compared with the employment of wavelength modulation spectroscopy, long path cells and optical cavities, and the narrow bandwidth of QCLs utilised to determine a previously unknown spectral constant of DBr. Chapters 4 and 5 then utilise the high power of an external cavity quantum cascade laser in sub-Doppler Lamb-dip and polarisation spectroscopy measurements and then a pump-probe experiment. The laser linewidth is investigated on a millisecond timescale returning a current noise limited value of c.a. 2 MHz and the fundamental linewidth of the device investigated by altering the injection current. Chapter 5 is concerned with the pump-probe experiment, directly measuring the hot band absorption in a ladder like transition (R(6.5)$_\frac{1}{2}$ $v=1\leftarrow0$ and P(7.5)$_\frac{1}{2}$ $v=1\leftarrow0$). The Bennett peak in the hot band is observed with a DFB-QCL swept at $\sim 0.15$ MHz ns$^{-1}$ and is seen not just as a pump bandwidth limited lineshape, but as a highly velocity selected rapid passage signal. The effect of pressure, pump and probe scan rate and power upon this rapid passage signal is also studied. It is further noted that rapid thermalisation occurs within $v=1$ such that at pressures above c.a. 30 mTorr a broad NO doublet absorption is observed beneath the Bennett peak from which a total population transfer of c.a. $16 \%$ can be estimated. Finally an experiment is discussed in which this population transfer could be increased for use in secondary applications. Chapter 6 then presents initial measurements with two prototype pulsed 3.3 \si{\micro\metre} QCLs considering the prospects of such devices. A Fabry-P\'rot device is first studied using a Fourier transform spectrometer and temperature tuning used to produce a spectrum of the Q-branch of CH$_4$ around 3025 cm$^$. Experiments are then performed using a DFB QCL investigating the chirp rate of the system as an indicator of the rate of heat accumulation within the system. Heat management is of particular consideration when the sea-change is made from pulsed to continuous devices. For this device absorption spectra of two CH$_4$ transitions at 2971 cm$^$ are used to determine the chirp rate, which is found to be c.a. 1.8 GHz ns$^$, at least an order of magnitude higher than that of the longer wavelength pulsed devices considered in Chapter 2.
|
277 |
Ultrafast carrier dynamics in organic-inorganic semiconductor nanostructuresYong, Chaw Keong January 2012 (has links)
This thesis is concerned with the influence of nanoscale boundaries and interfaces upon the electronic processes that occur within the inorganic semiconductors. Inorganic semiconductor nanowires and their blends with semiconducting polymers have been investigated using state-of-the-art ultrafast optical techniques to provide information on the sub-picosecond to nanosecond photoexcitation dynamics in these systems. Chapters 1 and 2 introduce the theory and background behind the work and present a literature review of previous work utilising nanowires in hybrid organic photovoltaic devices, revealing the performances to date. The experimental methods used during the thesis are detailed in Chapter 3. Chapter 4 describes the crucial roles of surface passivation on the ultrafast dynamics of exciton formation in gallium arsenide (GaAs) nanowires. By passivating the surface states of nanowires, exciton formation via the bimolecular conversion of electron-hole plasma can observed over few hundred picoseconds, in-contrast to the fast carrier trapping in 10 ps observed in the uncoated nanowires. Chapter 5 presents a novel method to passivate the surface-states of GaAs nanowires using semiconducting polymer. The carrier lifetime in the nanowires can be strongly enhanced when the ionization potential of the overcoated semiconducting polymer is smaller than the work function of the nanowires and the surface native oxide layers of nanowires are removed. Finally, Chapter 6 shows that the carrier cooling in the type-II wurtzite-zincblend InP nanowires is reduced by order-of magnitude during the spatial charge-transfer across the type-II heterojunction. The works decribed in this thesis reveals the crucial role of surface-states and bulk defects on the carrier dynamics of semiconductor nanowires. In-addition, a novel approach to passivate the surface defect states of nanowires using semiconducting polymers was developed.
|
278 |
Monolayers of cationic surfactants at the air-water and oil-water interfacesKnock, Mona Marie January 2003 (has links)
Monolayers of the cationic surfactant hexadecyltrimethylammonium halide (CTAX, where X = F¯, Cl¯, Br¯, and I¯) have been studied at the air-water and oilwater interfaces. At the air-water interface, the effects of the halide counterion and the addition of counterion were investigated. Sum-frequency spectroscopy (SFS), ellipsometry, and surface tensiometry indicated that the counterion changed the efficiency and effectiveness of the surfactant, both decreasing in the order of Br¯> Cl¯>F¯. The addition of salt in the form of 0.1 M KX was found to reduce the cmc but had little effect on the limiting area per molecule attained at the cmc, which increased from 44 Å<sup>2</sup> for CTAB to 65 Å<sup>2</sup> for CTAC and ca. 94 Å<sup>2</sup> for CTAF. Neither SFS nor ellipsometry provided any firm evidence for specific effects of the halide ions on the structure of the surfactant monolayers. For CTAB monolayers in the absence of excess electrolyte, the effect of area per molecule on the sum-frequency (SF) spectra was studied. Mixed monolayers of CTAB and tetradecane at the air-water interface exhibit a first-order phase transition from a conformationally disordered to a conformationally ordered state as the temperature is lowered. The phase transition occurs ca. 11 °C above the bulk melting point of tetradecane. A new experimental arrangement is described for acquiring SF spectra from surfactants at the oil-water interface. The key features of this approach are the stabilisation of a thin oil film between a sapphire prism and an aqueous phase, and the use of total internal reflection to enhance the total signal and discriminate against signals from other interfaces in the system. With this new methodology, the first SF vibrational spectra of surfactant monolayers at an alkane-water interface were obtained. Surface tensiometry was used to characterise the monolayers further. The structure of CTAB monolayers at the hexadecane-water interface was determined by SFS and compared with monolayers of CTAB at the air-water interface. At low concentrations, CTAB/hexadecane showed the expected features in the C-H stretching region, characteristic of a conformationally disordered monolayer. As the bulk concentration approached the critical micelle concentration, the spectra changed to one characteristic of a more ordered, upright conformation. Ellipsometric measurements supported this conclusion. This qualitative structural change is not observed in analogous monolayers at the air-water interface or CCl<sub>4</sub>-water interface, or in surfactant solutions in contact with a hydrophobic solid surface.
|
279 |
Single molecule studies of F1-ATPase and the application of external torqueBilyard, Thomas January 2009 (has links)
F<sub>1</sub>-ATPase, the sector of ATP synthase where the synthesis of cellular ATP occurs, is a rotary molecular motor in its own right. Driven by ATP hydrolysis, direct observation of the rotation of the central axis within single molecules of F<sub>1</sub> is possible. Operating at close to 100% efficiency, F<sub>1</sub> from thermophilic Bacillus has been shown to produce ~40pN˙nm of torque during rotation. This thesis details the groundwork required for the direct measurement of the torque produced by F<sub>1</sub> using a rotary angle clamp, an optical trapping system specifically designed for application to rotary molecular motors. Proof-of-concept experiments will be presented thereby demonstrating the ability to directly manipulate single F<sub>1</sub> molecules from Escherichia coli and yeast mitochondria (Saccharomyces cerevisiae), along with activation of F<sub>1</sub> out of its inhibited state by the application of external torque. Despite in-depth knowledge of the rotary mechanism of F<sub>1</sub> from thermophilic Bacillus, the rotation of F<sub>1</sub> from Escherichia coli is relatively poorly understood. A detailed mechanical characterization of E.coli F<sub>1</sub> will be presented here, with particular attention to the ground states within the catalytic cycle, notably the ATP-binding state, the catalytic state and the inhibited state. The fundamental mechanism of E.coli F<sub>1</sub> appears to depart little from that of F<sub>1</sub> from thermophilic Bacillus, although, at room temperature, chemical processes occur faster within the E.coli enzyme, in line with considerations regarding the physiological conditions of the different species. Also presented here is the verification of the rotary nature of yeast mitochondrial F<sub>1</sub>. The torque produced by F<sub>1</sub> from thermophilic Bacillus, E.coli and yeast mitochondria is the same, within experimental error, despite their diverse evolutionary and environmental origins.
|
280 |
Imaging the assembly of the Staphylococcal pore-forming toxin alpha-HemolysinThompson, James Russell January 2009 (has links)
Alpha-hemolysin is a pore-forming toxin secreted by pathogenic Staphylococcus aureus. Its spontaneous oligomerization and assembly into a trans-bilayer beta-barrel pore is a model for the assembly of many other pore-forming toxins. It is studied here in vitro as a means to probe general membrane protein oligomerization and lipid bilayer insertion. This thesis details the results of experiments to develop and implement a novel in vitro lipid bilayer system, Droplet-on-Hydrogel Bilayers (DHBs) for the single-molecule imaging of alpha-hemolysin assembly. Chapter 2 describes the development of DHBs and their electrical characterization. Experiments show the detection of membrane channels in SDS-PAGE gels post-electrophoresis and DHBs use as a platform for nanopore stochastic sensing. Chapter 3 describes the engineering and characterization of fluorescently-labelled monomeric alpha-hemolysin for use in protein assembly imaging experiments described in Chapter 6. Chapter 4 describes the characterization of DHB lipid fluidity and suitability for single-molecule studies of membrane protein diffusion. In addition, a novel single-particle tracking algorithm is described. Chapter 5 describes experiments demonstrating simultaneous electrical and fluorescence measurements of alpha-hemolysin pores embedded within DHBs. The first multiple-pore stochastic sensing in a single-lipid bilayer is also described. Chapter 6 describes experiments studying the assembly of alpha-hemolysin monomers in DHBs. Results show that alpha-hemolysin assembles rapidly into its oligomeric state, with no detection of long-lived intermediate states.
|
Page generated in 0.0632 seconds