• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 9
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The effect of laser contrast and target thickness on laser-plasma interactions at the Texas Petawatt

Meadows, Alexander Ross 16 February 2015 (has links)
A two-year experimental campaign is described during which diamond-like carbon and plastic targets with thicknesses from 20 nanometers to 15 micrometers were irradiated by the Texas Petawatt Laser. Target composition and thickness were varied to modify the specifics of the laser-matter interaction. Plasma mirrors were selectively implemented to affect the contrast of the laser system and provide additional control of the physical processes under investigation. A number of particle diagnostics were implemented to measure the distribution of laser accelerated ions and electrons. In addition, optical diagnostics were fielded to measure the intensity profile of the laser and measure the density of the target pre-plasma. The results of these experiments suggest that the Texas Petawatt laser pulse has pre-pulse and pedestal features with intensities at least 10⁻⁸ of the main pulse. Micronscale targets were able to survive these features and maintain a relatively sharp density gradient until the arrival of the main laser pulse, allowing for ion acceleration. Electron spectra measured in this configuration show an average temperature of 10 MeV, with no v angular dependence out to at least 60 degrees. By contrast, interferometric plasma density measurements and a lack of any observable ion acceleration suggest that nanoscale targets were destroyed well before the main pulse. In this case, the peak of the laser pulse interacted with a cloud of plasma between 10⁻³ and 10⁻² of critical density. The contrast improvement offered by the implementation of plasma mirrors was seen to increase the maximum energy of laser accelerated protons from targets thicker than 1 micrometer. In addition, the plasma mirrors allowed nanoscale targets to survive pre-pulse and pedestal features and support the production of ion beams. Proton spectra show that ions were accelerated to greater maximum energies from nanoscale targets than from more traditional micron-scale targets. This effect can be attributed to a reduction in the target pre-plasma scale length upon the introduction of plasma mirrors. These results indicate that the manipulation of target properties and laser contrast can significantly affect the interaction between an ultrahigh intensity laser and a target. / text
32

Nonlinear instabilities and filamentation of Bessel beams / Instabilités non linéaires et filamentation des faisceaux de Bessel

Ouadghiri Idrissi, Ismail 10 December 2018 (has links)
Un faisceau de Bessel est un champ électromagnétique résistant à la diffraction. il peut se propager en préservant son profile transversal d'intensité même en régime de filamentation. Ceci est très avantageux pour les applications laser de haute puissance, en particulier parce qu’ils permettent de générer des canaux de plasma homogènes dans les diélectriques. Cependant, à haute intensité, les impulsions laser ultracourtes subissent, dans certaines conditions expérimentales (faible focalisation), des instabilités non linéaires entraînant la modulation d’intensité du lobe central au cours de la propagation, ce qui peut être néfaste pour ces applications comme l’usinage des matériaux transparents. L’objectif de cette thèse est de contrôler la génération de canaux de plasma par impulsions de Bessel via le contrôle du profil spatial de ces impulsions. Nous avons dans une première partie, développé une méthode expérimentale pour manipuler le profil d’intensité axiale en régime linéaire. La seconde partie concerne l’étude et le contrôle des instabilités non linéaires induites par l’effet Kerr. Nous avons développé un modèle théorique du mélange à quatre ondes dans les faisceaux de Bessel et avons démontré une nouvelle approche pour manipuler ces instabilités par une mise en forme appropriée de l’intensité axiale des faisceaux de Bessel. Nous avons ensuite étudié la validité des modèles de filamentation basés l’équation non linéaire de Schrödinger et le modèle de Drude. Les résultats expérimentaux de la filamentation des faisceaux de Bessel dans le verre ont montré un comportement invariant par propagation, contrairement aux modèles numériques. Nous avons testé et amendé les modèles de dynamiques de plasma et de propagation. Nos simulations sont comparées à des résultats expérimentaux. Nous montrons que les corrections que nous avons pu apporter par rapport à l’état de l’art sont insuffisantes et rendent nécessaire une autre forme de modèle. / Bessel beams are solutions of Helmholtz equation. They can propagate while conserving their transverse intensity profile in space even in filamentation regime. This feature is very advantageous in high power laser applications such as plasma waveguide generation and laser ablation because they can generate homogeneous plasma channels in dielectrics. However, for moderate to low focusing conditions, Bessel pulses can sustain nonlinear instabilities, which consist in the modulation of the central core intensity along the propagation. Such a feature can prevent efficient energy deposition which hampers the applicability of Bessel pulses. The aim of this thesis is to investigate the possibility to control laser-generated plasma channels using spatially-reshaped Bessel pulses. In a first part, we have developed an experimental method based on a spatial light modulator to modify the evolution of the on-axis intensity of Bessel beams in the linear propagation regime. To study and control Kerr-induced instabilities, we developed, in a second part, a novel model based on four wave mixing interactions in Bessel beams. We have then demonstrated a novel approach to control these instabilities via on-axis intensity shaping. Bessel filamentation models in transparent media were then studied. Most models used in literature are based on nonlinear Schrödinger equation for light propagation and Drude model for laser-matter coupling. Experimental results on Bessel filamentation in glass showed propagation-invariant features in contrast with numerical simulations. Several corrections to this model were discussed. Our results show that such models are insufficient to explain our experimental results and thus the need to develop a more suitable one.

Page generated in 0.1374 seconds