Spelling suggestions: "subject:"lasererzeugtes cplasma."" "subject:"lasererzeugtes deplasma.""
41 |
Charakterisierung von Plasmen, erzeugt durch Fokussierung von 100 ps Laserpulsen auf FestkörperoberflächenKochan, Natalie 18 July 2002 (has links)
Bibliographische Beschreibung und Referat.
Kochan, Natalie.
Charakterisierung von Plasmen, erzeugt durch Fokussierung von 100 ps Laserpulsen auf Festkörperoberflächen.
Technische Universität Chemnitz, Institut für Physik, Dissertation, 2002
(104 Seiten; 48 Abbildungen; 4 Tabellen; 102 Literaturzitate).
In der vorliegenden Arbeit wurden Plasmen, die durch Laserbestrahlung erzeugt wurden, untersucht. Der Schwerpunkt der Untersuchungen lag auf der Bestimmung der Elektronendichte des Plasmas und der Plasmatemperatur, mit hoher räumlicher und zeitlicher Auflösung. Überwiegend erfolgten die Untersuchungen unter Normaldruck an Luft.
Zunächst werden einige Grundlagen der Wechselwirkung von Laserstrahlung mit einem Plasma dargestellt, die für Bearbeitung des Themas wesentlich sind. Anschließend werden experimentelle Aufbauten und Auswertungsmethoden beschrieben. Zur Plasmadiagnostik wurden verschiedene Messmethoden eingesetzt, die eine hohe zeitliche und räumliche Auflösung gestatten: Absorptionsphotographie, Interferometrie, Messungen der Faraday-Drehung und Röntgenstreakmessungen.
Im Hauptteil der Arbeit wurde zunächst der Einfluss der Leistungsdichte der Laserstrahlung auf die im laserinduzierten Plasma ablaufenden Prozesse untersucht. Die Untersuchungen erfolgten sowohl bei atmosphärischem Druck als auch im Vakuum. Die Leistungsdichte der Laserstrahlung wurde dabei von 10^9 bis 10^14 W/cm2 variiert. Es wurde dabei gezeigt, dass die Anwesenheit einer Gasatmosphäre die Expansion des Plasmas behindert und damit zu einer höheren Plasmadichte als in Hochvakuum führt. Es wurde festgestellt, dass es bei einer Leistungsdichte von ca. 5,0×10^9 W/cm2 eine stark nichtlineare Abhängigkeit sowohl der Ausbreitungsgeschwindigkeit als auch der mittleren Elektronendichte in der Schockwelle von der Leistungsdichte gibt. Ab einer Leistungsdichte von ~ 10^13 W/cm2 wurde bei Bestrahlung eines Ag-Targets in Luft ein schmaler Plasmajet mit einer hohen Elektronendichte von mehr als 10^20 cm-3 und einer Länge von etwa 300 µm beobachtet. Bei noch höheren Leistungsdichten von ca. 10^14 W/cm2 treten mehrere Filamente in unterschiedlichen Entwicklungsstadien gleichzeitig auf. Es wurde außerdem das Phänomen der Plasmaabtrennung (plasma bullets) nachgewiesen.
Im weiteren wurden Plasmaparameter laserinduzierter Plasmen mit solchen laserinduzierter Entladungen in Luft verglichen. Es ergab sich, dass in beiden Fällen Filamente mit sehr ähnlichen Plasmaparametern entstehen können.
Die Feldstärke der sich im laserinduzierten Plasma spontan bildenden Magnetfelder wurde durch Faraday-Messungen ermittelt. Die Stärke (4 7 MG) und die Orientierung der Felder weisen darauf hin, dass diese Felder durch Resonanzabsorption zustande kommen.
Die Plasmatemperaturen wurden mit Hilfe optischer Verfahren (in Luft) bzw. Röntgenstreakmessungen (unter Vakuum) ermittelt. Dabei wurde zeitlich aufgelöst der Verlauf der Temperaturen von Plasmen gemessen, welche durch den Beschuss von Targets unterschiedlichen Materials (Al und Cu) im Vakuum erzeugt wurden.
|
42 |
Diagnostik an laserinduzierten Plasmakanälen und Mikropinchstrukturen mittels Kurzzeitinterferometrie und zeitaufgelöster RöntgenspektroskopieBlaudeck, Thomas 17 December 2002 (has links)
This work deals with the interaction of intense 100 ps laser pulses with double-layer foil targets, consisting of one dielectric (Mylar) layer and one metallic layer. The diagnostics of the evolving plasmas is done by the means of shorttime interferometry, time-resolved X-ray spectroscopy, and methods of ion dosimetry in polymer nuclear track detectors (CR-39). / Die Arbeit beschäftigt sich mit der Wechselwirkung intensiver 100-ps-Laserpulse eines Nd:YAG-Lasersystems mit Zweischicht-Folientargets, die aus einer dielektrischen Schicht (Mylar) und einer metallischen Schicht bestehen. Die entstehenden Plasmen werden mittels Kurzzeitinterferometrie und zeitaufgelöster Röntgenspektroskopie sowie mit Methoden der Ionendosimetrie in Polymer-Kernspurätzdetektoren (CR-39) untersucht.
|
43 |
Ion energy loss at maximum stopping power in a laser-generated plasma / Dépôt d'énergie des ions à pouvoir d'arrêt maximal dans un plasma généré par laserCayzac, Witold 02 December 2013 (has links)
Dans le cadre de cette thèse, un nouveau dispositif expérimental pour la mesure du dépôt d'energie d'ions carbone au maximum du pouvoir d'arrêt dans un plasma généré par laser a été développé et testé avec succès. Dans ce domaine de paramètres où la vitesse du projectile est de l'ordre de grandeur de la vitesse thermique des électrons libres du plasma, l'incertitude théorique sur le pouvoir d'arrêt peut atteindre 50%. Or à l'heure actuelle, aucune donnée expérimentale ne permet de vérifier et de tester les différentes prédictions. Une discrimination des théories existantes du pouvoir d'arrêt est cependant essentielle pour la Fusion par Confinement Inertiel et particulièrement pour comprendre le chauffage du combustible par les particules alpha dans la phase d'allumage. Pour la première fois, des mesures précises du dépôt d'énergie des ions ont été effectuées dans une configuration expérimentale reproductible et entièrement caractérisée. Celle-ci consiste en un faisceau d'ions entièrement ionisé interagissant avec un plasma entièrement ionisé et homogène. Le plasma a été généré par l'irradiation d'une cible mince de carbone avec deux faisceaux laser à haute énergie et présente une température électronique maximale of 200 eV. Les paramètres du plasma ont été simulés à l'aide d'un code hydrodynamique radiatif bi-dimensionel, tandis que la distribution de charge du faisceau d'ions a été estimée avec un code Monte-Carlo qui décrit les processus d'échange de charge des ions dans le plasma. Pour sonder le plasma au maximum du pouvoir d'arrêt, un faisceau d'ions pulsé à haute fréquence a été freiné à une énergie de 0.5 MeV par nucléon. Le dépôt d'énergie des ions a été déterminé via une mesure de temps de vol à l'aide d'un détecteur à base de diamant produit par dépôt chimique en phase vapeur, protégé contre les radiations émises par le plasma. Une première campagne expérimentale a été conduite pour exploiter le nouveau dispositif, dans laquelle le dépôt d'énergie a été mesuré avec une précision inférieure à 200 keV. Cela a permis, grâce à la connaissance des paramètres du plasma et du faisceau d'ions, de tester différentes théories de pouvoir d'arrêt de manière fiable. Une analyse préliminaire des résultats montre que le dépôt d'énergie au maximum du pouvoir d'arrêt est plus faible qu'il n'a été prédit par la plupart des théories, et en particulier par les théories des perturbations. / In the frame of this thesis, a new experimental setup for the measurement of the energy loss of carbon ions at maximum stopping power in a hot laser-generated plasma has been developed and successfully tested. In this parameter range where the projectile velocity is of the same order of magnitude as the thermal velocity of the plasma free electrons, large uncertainties of up to 50% are present in the stopping-power description. To date, no experimental data are available to perform a theory benchmarking. Testing the different stopping theories is yet essential for inertial confinement fusion and in particular for the understanding of the alpha-particle heating of the thermonuclear fuel. Here, for the first time, precise measurements were carried out in a reproducible and entirely characterized beam-plasma configuration. It involved a nearly fully-stripped ion beam probing a homogeneous fully-ionized plasma. This plasma was generated by irradiating a thin carbon foil with two high-energy laser beams and features a maximum electron temperature of 200 eV. The plasma conditions were simulated with a two-dimensional radiative hydrodynamic code, while the ion-beam charge-state distribution was predicted by means of a Monte-Carlo code describing the charge-exchange processes of projectile ions in plasma. To probe at maximum stopping power, high-frequency pulsed ion bunches were decelerated to an energy of 0.5 MeV per nucleon. The ion energy loss was determined by a time-of-flight measurement using a specifically developed chemical-vapor-deposition diamond detector that was screened against any plasma radiation. A first experimental campaign was carried out using this newly developed platform, in which a precision better than 200 keV on the energy loss was reached. This allowed, via the knowledge of the plasma and of the beam parameters, to reliably test several stopping theories, either based on perturbation theory or on a nonlinear T-Matrix formalism. A preliminary analysis suggests that the energy deposition at maximum stopping power is significantly smaller than predicted, particularly, by perturbation approaches. / Im Rahmen dieser Arbeit wurde ein neuer experimentelle Aufbau für die Messung des Energieverlusts von Kohlenstoff-Ionen bei maximalem Bremsvermögen in einem lasererzeugtem Plasma entwickelt und getestet. In diesem Parameterbereich, wo die Projektilgeschwindigkeit nah der thermischen Geschwindigkeit der Plasmaelektronen liegt, weist die theoretische Beschreibung des Bremsvermögens erheblichen Unsicherheiten bis 50% auf. Ausserdem sind bisher keine experimentellen Daten verfügbar, um die theoretischen Vorhersagen zu testen. Eine Bewertung der verschiedenen Theorien des Bremsvermögens ist jedoch von grosser Bedeutung für die Trägheitsfusion und insbesondere für das Verständnis der Heizung des Fusionsbrennstoffs mittels Alpha-Teilchen. Zum ersten Mal wurden präzisen Messungen in einer reproduzierbaren und vollständig bekannten Strahl-Plasma Einstellung durchgeführt. Sie besteht in einem vollionisierten Ionenstrahl, der mit einem homogenen und vollionisierten Plasma wechselwirkt. Das Plasma wurde von der Bestrahlung einer dünnen Kohlenstofffolie mit zwei hochenergetischen Laserstrahlen erzeugt, und weist eine maximale Elektronentemperatur von 200 eV auf. Die Plasmaparameter wurden mithilfe eines zweidimensionalen radiativen hydrodynamischen Codes simuliert, während die Ladungsverteilung des Ionenstrahls wurde mit einem Monte-Carlo Code berechnet, der die Umladungsprozesse von Projektilionen im Plasma beschreibt. Um das Plasma bei maximalem Bremsvermögen zu untersuchen, wurde ein hoch-Frequenz gepulster Ionenstrahl zu einer Energie von 0.5 MeV pro Nukleon heruntergebremst. Der Ionenenergieverlust wurde mit der Flugzeitsmethode mit einem gegen Plasmastrahlung abgeschirmten CVD-Diamant-Detektor gemessen. Eine erste experimentelle Kampagne wurde mit dem neuen Aufbau durchgeführt, in der eine Messungspräzision besser als 200 keV auf dem Energieverlust erreicht wurde. Dies ermöglichte, mit der Kenntnis der Plasma- und Strahlparameter, mehreren Bremsvermögen-Theorien zuverlässig zu testen und zu vergleichen. Eine vorläufige Datenanalyse zeigt, dass die Energiedeposition bei maximalem Bremsvermögen ist kleiner, als insbesondere von den störungstheoretischen Ansätzen vorhergesagt wurde.
|
Page generated in 0.0386 seconds