• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimação da prevalência da depressão via o modelo de classes latentes utilizando a amostra da Pesquisa Nacional de Saúde, 2013

Idalino, Rita de Cássia de Lima January 2019 (has links)
Orientador: Luzia Aparecida Trinca / Resumo: A depressão é apontada como a doença crônica não transmissível que terá maior abrangência até 2030, atingindo direta ou indiretamente vários setores nos quais a população está inserida. No Brasil, a situação da depressão é alarmante, respondendo pela maior taxa do continente latino-americano. A Pesquisa Nacional de Saúde (PNS) é um inquérito de base domiciliar de abrangência nacional. Trata-se de uma iniciativa do Ministério da Saúde em parceria com o Instituto Brasileiro de Geografia e Estatística (IBGE) e tem como objetivo caracterizar a situação de saúde e os estilos de vida da população brasileira, e assim conhecer como acontece a atenção à saúde em diversos grupos da população. Neste trabalho a depressão será o objeto de estudo por ser caracterizada como uma doença complexa de difícil mensuração e observação devido a suas causas multifatoriais. O levantamento de dados da PNS utilizou um planejamento amostral complexo, o que demanda uma atenção especial em relação à análise das informações coletadas. Considerando a magnitude da pesquisa e levando em consideração as diversidades regionais, foram ajustados modelos com base na teoria de classes latentes. Essa abordagem identifica grupos baseados nos padrões de respostas observadas nas variáveis categóricas utilizando um modelo probabilístico. Assim é possível classificar cada indivíduo como pertencente a um grupo, estimar a prevalência e identificar características decisivas para o surgimento dos grupos. A partir de itens qu... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Depression is indicated as the non-transmissible chronic disease that will be more widespread until 2030, reaching directly or indirectly several sectors in which the population is inserted. In Brazil, the situation of depression is alarming, accounting for the highest rate in the Latin American continent. The National Health Survey (PNS) is a nationwide household survey. It is an initiative of the Ministry of Health in partnership with the Brazilian Institute of Geography and Statistics (IBGE) and aims to characterize the health situation and the lifestyles of the Brazilian population, and thus to know how health care happens in different groups of the population. In this study, depression will be the object of study because it is characterized as a complex disease of difficult measurement and observation due to its multifactorial causes. The PNS data collection used a complex sampling plan, which demands special attention in relation to the analysis of the information collected. Considering the magnitude of the research and taking into account the regional diversities, models were adjusted based on latent class theory. This approach identifies groups based on the patterns of responses observed in the categorical variables using a probabilistic model. Thus it is possible to classify each individual as belonging to a group, to estimate the prevalence and identify decisive characteristics for the emergence of groups. Based on items dealing with mental health, it was possible t... (Complete abstract click electronic access below) / Doutor
2

Covariates in Factor Mixture Modeling: Investigating Measurement Invariance across Unobserved Groups

Wang, Yan 11 June 2018 (has links)
Factor mixture modeling (FMM) has been increasingly used to investigate unobserved population heterogeneity. This Monte Carlo simulation study examined the issue of measurement invariance testing with FMM when there are covariate effects. Specifically, this study investigated the impact of excluding and misspecifying covariate effects on the class enumeration and measurement invariance testing with FMM. Data were generated based on three FMM models where the covariate had impact on the latent class membership only (population model 1), both the latent class membership and the factor (population model 2), and the latent class membership, the factor, and one item (population model 3). The number of latent classes was fixed at two. These two latent classes were distinguished by factor mean difference for conditions where measurement invariance held in the population, and by both factor mean difference and intercept differences across classes when measurement invariance did not hold in the population. For each of the population models, different analysis models that excluded or misspecified covariate effects were fitted to data. Analyses consisted of two parts. First, for each analysis model, class enumeration rates were examined by comparing the fit of seven solutions: 1-class, 2-class configural, metric, and scalar, and 3-class configural, metric, and scalar. Second, assuming the correct solution was selected, the fit of analysis models with the same solution was compared to identify a best-fitting model. Results showed that completely excluding the covariate from the model (i.e., the unconditional model) would lead to under-extraction of latent classes, except when the class separation was large. Therefore, it is recommended to include covariate in FMM when the focus is to identify the number of latent classes and the level of invariance. Specifically, the covariate effect on the latent class membership can be included if there is no priori hypothesis regarding whether measurement invariance might hold or not. Then fit of this model can be compared with other models that included covariate effects in different ways but with the same number of latent classes and the same level of invariance to identify a best-fitting model.
3

Patrones de autoidentificación etnorracial de la población indígena en las encuestas de hogares en el Perú / Etno-racial self-identification patterns of indigenous population in household surveys in Peru

Moreno, Martín 10 April 2018 (has links)
This study defines and characterizes etno-racial self-identification patterns of the Peruvianpopulation employing the Encuesta Nacional de Hogares (Enaho) 2012. For this purpose, we have employed a module with questions recently added to this survey, in order to approach empirically to the notion of identity, combining the dimensions of native language, self-acknowledgment and the notion of indigenous population. The results are based on a latent classes analysis employing, at the same time, the information in this questions in order to identify four possible etnoracial identities. These identities are intertwined in the self-acknowledgment process with certain ancestors and customs, and also the one based on language. With the methodology and  the  data  collected,  we  haven’t  found  evidence that point that ethnic identities are multiple and fluent. The ethnic identities show certain heterogeneity in terms of the dimensions they are composed. / Este estudio define y caracteriza los patrones de autoidentificación etnorracial de la población peruana haciendo uso de la Encuesta Nacional de Hogares (Enaho) 2012. Para ello utilizamos un módulo con preguntas recientemente incorporado a la encuesta, el cual nos permite aproximarnos empíricamente a la noción de identidad integrando las dimensiones de la lengua o idioma materno, el autorreconocimiento y la noción de pueblo indígena. Los resultados se basan en un análisis de clases latentes usando simultáneamente la información de estas preguntas, las cuales permiten identificar hasta cuatro posibles identidades etnorraciales entretejidas en el autorreconocimiento con ciertos antepasados y costumbres, así como el que está basado en la lengua. Así, con las herramientas metodológicas usadas, y con la actual modalidad de recolección de datos, no se encuentra evidencia que indique que las identidades étnicas son múltiples y fluidas. Las identidades étnicas muestran cierta heterogeneidad en términos de las dimensiones que las componen.
4

Determining the number of classes in latent class regression models / A Monte Carlo simulation study on class enumeration

Luo, Sherry January 2021 (has links)
A Monte Carlo simulation study on class enumeration with latent class regression models. / Latent class regression (LCR) is a statistical method used to identify qualitatively different groups or latent classes within a heterogeneous population and commonly used in the behavioural, health, and social sciences. Despite the vast applications, an agreed fit index to correctly determine the number of latent classes is hotly debated. To add, there are also conflicting views on whether covariates should or should not be included into the class enumeration process. We conduct a simulation study to determine the impact of covariates on the class enumeration accuracy as well as study the performance of several commonly used fit indices under different population models and modelling conditions. Our results indicate that of the eight fit indices considered, the aBIC and BLRT proved to be the best performing fit indices for class enumeration. Furthermore, we found that covariates should not be included into the enumeration procedure. Our results illustrate that an unconditional LCA model can enumerate equivalently as well as a conditional LCA model with its true covariate specification. Even with the presence of large covariate effects in the population, the unconditional model is capable of enumerating with high accuracy. As noted by Nylund and Gibson (2016), a misspecified covariate specification can easily lead to an overestimation of latent classes. Therefore, we recommend to perform class enumeration without covariates and determine a set of candidate latent class models with the aBIC. Once that is determined, the BLRT can be utilized on the set of candidate models and confirm whether results obtained by the BLRT match the results of the aBIC. By separating the enumeration procedure of the BLRT, it still allows one to use the BLRT but reduce the heavy computational burden that is associated with this fit index. Subsequent analysis can then be pursued accordingly after the number of latent classes is determined. / Thesis / Master of Science (MSc)
5

ELF (Enhanced Liver Fibrosis) como marcador não invasivo de fibrose hepáticana hepatite C crônica / ELF (Enhanced Liver Fibrosis) as a non invasive predictor of liver fibrosis in hepatitis C

Flávia Ferreira Fernandes 20 August 2014 (has links)
A fibrose hepática é o aspecto mais relevante e o mais importante determinante de morbimortalidade na hepatite C crônica (HCC). Historicamente, a biópsia hepática é o método de referência para avaliação da fibrose causada pela HCC, apesar de apresentar limitações. O estudo de marcadores não invasivos, que possam obviar a necessidade da biópsia, é uma área de constante interesse na hepatologia. Idealmente, a avaliação da fibrose hepática deveria ser acurada, simples, prontamente disponível, de baixo custo e informar sobre o prognóstico da patologia. Os marcadores não invasivos mais estudados são a elastografia hepática transitória (EHT) e os laboratoriais. A EHT já foi extensamente validada na HCC e está inserida na rotina de avaliação destes pacientes. Dentre os laboratoriais, existem diversos testes em continua experimentação e, até o momento, nenhum foi integrado à prática clínica no Brasil, embora já aplicados rotineiramente em outros países. O Enhanced Liver Fibrosis (ELF), um teste que dosa no soro ácido hialurônico, pró-peptídeo amino-terminal do colágeno tipo III e inibidor tissular da metaloproteinase 1, tem se mostrado bastante eficaz na detecção de fibrose hepática significativa e de cirrose na HCC. Neste estudo o ELF teve o seu desempenho avaliado em relação a biópsia hepática e demonstrou apresentar boa acurácia na detecção tanto de fibrose significativa quanto de cirrose. Na comparação com a EHT apresentou acurácia semelhante para estes mesmos desfechos, com significância estatística. No entanto, foi observada uma superestimação da fibrose com a utilização dos pontos de corte propostos pelo fabricante. Este achado está em acordo com a literatura, onde não há consenso sobre o melhor ponto de corte a ser empregado na prática clínica. Com a ampliação da casuística foi possível propor novos pontos de corte, através da análise clássica, com a biópsia hepática como padrão ouro. O resultado obtido vai ao encontro do observado por outros autores. Em seguida, os novos pontos de corte do ELF foram reavaliados sem que a biópsia hepática fosse a referência, através da análise de classes latentes. Mais uma vez o ELF apresentou bom desempenho, inclusive com melhora de suas sensibilidade e especificidade em comparação com a análise clássica, onde a biópsia hepática é a referência. Assim sendo, é possível concluir que o ELF é um bom marcador não invasivo de fibrose hepática. No entanto, para detecção de fibrose significativa e cirrose, deve ser considerada a aplicação na prática clínica dos novos pontos de corte aqui propostos. / Liver fibrosis is the most relevant issue concerning chronic hepatitis C (CHC) and determines its prognosis. Historically, liver biopsy has been the reference method for evaluating fibrosis related to CHC, though it presents many drawbacks. There is a continuing interest in the development of non invasive markers capable of replacing liver biopsy. The ideal surrogate for fibrosis evaluation should be accurate, simple, low cost and yield prognostic information. So far, the most well known non invasive methods are transient hepatic elastography (TE) and laboratory panels. TE has already been extensively validated and is integrated in patients routine. There is plenty of laboratory panels in continuing evaluation and some are already integrated in daily practice abroad. In Brasil, until the present moment, it is not a reality. Enhanced Liver Fibrosis (ELF) panel comprises the serum concentration of hyaluronic acid, tissue inhibitor of matrix metalloproteinases-1, and aminoterminal propeptide of type III procollagen and has demonstrated good performance in detecting significant fibrosis and cirrhosis in CHC patients. In the present study ELF had its performance evaluated against liver biopsy and obtained satisfactory accuracy in detecting significant fibrosis and cirrhosis. In comparison to TE no statistically significant diference was observed, for the same endpoints mentioned before. However, the application of manufacturers cutoff points produced overestimation of fibrosis stages. These findings are in accordance with other authors results, in that there is no consensus so far on the most adequate cutoff points for main clinical end points. Enlarging the data permited calculating new cutoff points, through the classical statistical approach, using liver biopsy as the gold standard. The results once more matched those published in literature. Following this, the ELF new cutoff points were evaluated in a statistical modeling where there are no gold standards, the latent classes analysis. Besides showing a satisfactory performance, in this new approach, ELF experimented an improvement in sensitivity and specificity, if compared with the classical analisys, with liver biopsy as reference. ELF panel has a good performance as a noninvasive fibrosis marker. However, new cutoff points need to be applied to improve its performance for the discrimination of different stages of fibrosis in CHC patients.
6

ELF (Enhanced Liver Fibrosis) como marcador não invasivo de fibrose hepáticana hepatite C crônica / ELF (Enhanced Liver Fibrosis) as a non invasive predictor of liver fibrosis in hepatitis C

Flávia Ferreira Fernandes 20 August 2014 (has links)
A fibrose hepática é o aspecto mais relevante e o mais importante determinante de morbimortalidade na hepatite C crônica (HCC). Historicamente, a biópsia hepática é o método de referência para avaliação da fibrose causada pela HCC, apesar de apresentar limitações. O estudo de marcadores não invasivos, que possam obviar a necessidade da biópsia, é uma área de constante interesse na hepatologia. Idealmente, a avaliação da fibrose hepática deveria ser acurada, simples, prontamente disponível, de baixo custo e informar sobre o prognóstico da patologia. Os marcadores não invasivos mais estudados são a elastografia hepática transitória (EHT) e os laboratoriais. A EHT já foi extensamente validada na HCC e está inserida na rotina de avaliação destes pacientes. Dentre os laboratoriais, existem diversos testes em continua experimentação e, até o momento, nenhum foi integrado à prática clínica no Brasil, embora já aplicados rotineiramente em outros países. O Enhanced Liver Fibrosis (ELF), um teste que dosa no soro ácido hialurônico, pró-peptídeo amino-terminal do colágeno tipo III e inibidor tissular da metaloproteinase 1, tem se mostrado bastante eficaz na detecção de fibrose hepática significativa e de cirrose na HCC. Neste estudo o ELF teve o seu desempenho avaliado em relação a biópsia hepática e demonstrou apresentar boa acurácia na detecção tanto de fibrose significativa quanto de cirrose. Na comparação com a EHT apresentou acurácia semelhante para estes mesmos desfechos, com significância estatística. No entanto, foi observada uma superestimação da fibrose com a utilização dos pontos de corte propostos pelo fabricante. Este achado está em acordo com a literatura, onde não há consenso sobre o melhor ponto de corte a ser empregado na prática clínica. Com a ampliação da casuística foi possível propor novos pontos de corte, através da análise clássica, com a biópsia hepática como padrão ouro. O resultado obtido vai ao encontro do observado por outros autores. Em seguida, os novos pontos de corte do ELF foram reavaliados sem que a biópsia hepática fosse a referência, através da análise de classes latentes. Mais uma vez o ELF apresentou bom desempenho, inclusive com melhora de suas sensibilidade e especificidade em comparação com a análise clássica, onde a biópsia hepática é a referência. Assim sendo, é possível concluir que o ELF é um bom marcador não invasivo de fibrose hepática. No entanto, para detecção de fibrose significativa e cirrose, deve ser considerada a aplicação na prática clínica dos novos pontos de corte aqui propostos. / Liver fibrosis is the most relevant issue concerning chronic hepatitis C (CHC) and determines its prognosis. Historically, liver biopsy has been the reference method for evaluating fibrosis related to CHC, though it presents many drawbacks. There is a continuing interest in the development of non invasive markers capable of replacing liver biopsy. The ideal surrogate for fibrosis evaluation should be accurate, simple, low cost and yield prognostic information. So far, the most well known non invasive methods are transient hepatic elastography (TE) and laboratory panels. TE has already been extensively validated and is integrated in patients routine. There is plenty of laboratory panels in continuing evaluation and some are already integrated in daily practice abroad. In Brasil, until the present moment, it is not a reality. Enhanced Liver Fibrosis (ELF) panel comprises the serum concentration of hyaluronic acid, tissue inhibitor of matrix metalloproteinases-1, and aminoterminal propeptide of type III procollagen and has demonstrated good performance in detecting significant fibrosis and cirrhosis in CHC patients. In the present study ELF had its performance evaluated against liver biopsy and obtained satisfactory accuracy in detecting significant fibrosis and cirrhosis. In comparison to TE no statistically significant diference was observed, for the same endpoints mentioned before. However, the application of manufacturers cutoff points produced overestimation of fibrosis stages. These findings are in accordance with other authors results, in that there is no consensus so far on the most adequate cutoff points for main clinical end points. Enlarging the data permited calculating new cutoff points, through the classical statistical approach, using liver biopsy as the gold standard. The results once more matched those published in literature. Following this, the ELF new cutoff points were evaluated in a statistical modeling where there are no gold standards, the latent classes analysis. Besides showing a satisfactory performance, in this new approach, ELF experimented an improvement in sensitivity and specificity, if compared with the classical analisys, with liver biopsy as reference. ELF panel has a good performance as a noninvasive fibrosis marker. However, new cutoff points need to be applied to improve its performance for the discrimination of different stages of fibrosis in CHC patients.

Page generated in 0.0933 seconds