• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Latimer-MacDuffee theorem for polynomials over finite fields

Van Zyl, Jacobus Visser 03 1900 (has links)
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2011. / Includes bibliography. / ENGLISH ABSTRACT: Latimer & MacDuffee showed in 1933 that there is a one-to-one correspondence between equivalence classes of matrices with a given minimum polynomial and equivalence classes of ideals of a certain ring. In the case where the matrices are taken over the integers, Behn and Van der Merwe developed an algorithm in 2002 to produce a representative in each equivalence class. We extend this algorithm to matrices taken over the ring Fq[T] of polynomials over a finite field and prove a modified version of the Latimer-MacDuffee theorem which holds for proper equivalence classes of matrices. / AFRIKAANSE OPSOMMING: Latimer & MacDuffee het in 1933 bewys dat daar 'n een-tot-een korrespondensie is tussen ekwivalensieklasse van matrikse met 'n gegewe minimumpolinoom en ekwivalensieklasse van ideale van 'n sekere ring. In die geval waar die matrikse heeltallige inskrywings het, het Behn en Van der Merwe in 2002 'n algoritme ontwikkel om verteenwoordigers in elke ekwivalensieklas voort te bring. Ons brei hierdie algoritme uit na die geval van matrikse met inskrywings in die ring Fq[T] van polinome oor 'n eindige liggaam en ons bewys 'n gewysigde weergawe van die Latimer-MacDuffee stelling wat geld vir klasse van streng ekwivalente matrikse.

Page generated in 0.0555 seconds