Spelling suggestions: "subject:"latticevalued convergence"" "subject:"latticevalued konvergence""
1 |
Lattice-valued Convergence: Quotient MapsBoustique, Hatim 01 January 2008 (has links)
The introduction of fuzzy sets by Zadeh has created new research directions in many fields of mathematics. Fuzzy set theory was originally restricted to the lattice , but the thrust of more recent research has pertained to general lattices. The present work is primarily focused on the theory of lattice-valued convergence spaces; the category of lattice-valued convergence spaces has been shown to possess the following desirable categorical properties: topological, cartesian-closed, and extensional. Properties of quotient maps between objects in this category are investigated in this work; in particular, one of our principal results shows that quotient maps are productive under arbitrary products. A category of lattice-valued interior operators is defined and studied as well. Axioms are given in order for this category to be isomorphic to the category whose objects consist of all the stratified, lattice-valued, pretopological convergence spaces. Adding a lattice-valued convergence structure to a group leads to the creation of a new category whose objects are called lattice-valued convergence groups, and whose morphisms are all the continuous homomorphisms between objects. The latter category is studied and results related to separation properties are obtained. For the special lattice , continuous actions of a convergence semigroup on convergence spaces are investigated; in particular, invariance properties of actions as well as properties of a generalized quotient space are presented.
|
2 |
Categorical Properties Of Lattice-valued Convergence SpacesFlores, Paul 01 January 2007 (has links)
This work can be roughly divided into two parts. Initially, it may be considered a continuation of the very interesting research on the topic of Lattice-Valued Convergence Spaces given by Jager [2001, 2005]. The alternate axioms presented here seem to lead to theorems having proofs more closely related to standard arguments used in Convergence Space theory when the Lattice is L = f0; 1g:Various Subcategories are investigated. One such subconstruct is shown to be isomorphic to the category of Lattice Valued Fuzzy Convergence Spaces defined and studied by Jager [2001]. Our principal category is shown to be a topological universe and contains a subconstruct isomorphic to the category of probabilistic convergence spaces discussed in Kent and Richardson [1996] when L = [0; 1]: Fundamental work in lattice-valued convergence from the more general perspective of monads can be found in Gahler [1995]. Secondly, diagonal axioms are defned in the category whose objects consist of all the lattice valued convergence spaces. When the latter lattice is linearly ordered, a diagonal condition is given which characterizes those objects in the category that are determined by probabilistic convergence spaces which are topological. Certain background information regarding filters, convergence spaces, and diagonal axioms with its dual are given in Chapter 1. Chapter 2 describes Probabilistic Convergence and associated Diagonal axioms. Chapter 3 defines Jager convergence and proves that Jager's construct is isomorphic to a bireáective subconstruct of SL-CS. Furthermore, connections between the diagonal axioms discussed and those given by Gahler are explored. In Chapter 4, further categorical properties of SL-CS are discussed and in particular, it is shown that SL-CS is topological, cartesian closed, and extensional. Chapter 5 explores connections between diagonal axioms for objects in the sub construct δ(PCS) and SL-CS. Finally, recommendations for further research are provided.
|
Page generated in 0.0728 seconds