• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The law of the iterated logarithm for tail sums

Ghimire, Santosh January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Charles N. Moore / The main purpose of this thesis is to derive the law of the iterated logarithm for tail sums in various contexts in analysis. The various contexts are sums of Rademacher functions, general dyadic martingales, independent random variables and lacunary trigonometric series. We name the law of the iterated logarithm for tail sums as tail law of the iterated logarithm. We first establish the tail law of the iterated logarithm for sums of Rademacher functions and obtain both upper and lower bound in it. Sum of Rademacher functions is a nicely behaved dyadic martingale. With the ideas from the Rademacher case, we then establish the tail law of the iterated logarithm for general dyadic martingales. We obtain both upper and lower bound in the case of martingales. A lower bound is obtained for the law of the iterated logarithm for tail sums of bounded symmetric independent random variables. Lacunary trigonometric series exhibit many of the properties of partial sums of independent random variables. So we finally obtain a lower bound for the tail law of the iterated logarithm for lacunary trigonometric series introduced by Salem and Zygmund.
2

Random iteration of isometries

Ådahl, Markus January 2004 (has links)
<p>This thesis consists of four papers, all concerning random iteration of isometries. The papers are:</p><p>I. Ambroladze A, Ådahl M, Random iteration of isometries in unbounded metric spaces. Nonlinearity 16 (2003) 1107-1117.</p><p>II. Ådahl M, Random iteration of isometries controlled by a Markov chain. Manuscript.</p><p>III. Ådahl M, Melbourne I, Nicol M, Random iteration of Euclidean isometries. Nonlinearity 16 (2003) 977-987.</p><p>IV. Johansson A, Ådahl M, Recurrence of a perturbed random walk and an iterated function system depending on a parameter. Manuscript.</p><p>In the first paper we consider an iterated function system consisting of isometries on an unbounded metric space. Under suitable conditions it is proved that the random orbit {<i>Z</i>n} <sup>∞</sup><sub>n=0</sub>, of the iterations corresponding to an initial point Z<sub>0</sub>, “escapes to infinity" in the sense that <i>P</i>(<i>Z</i>n Є <i>K)</i> → 0, as <i>n</i> → ∞ for every bounded set <i>K</i>. As an application we prove the corresponding result in the Euclidean and hyperbolic spaces under the condition that the isometries do not have a common fixed point.</p><p>In the second paper we let a Markov chain control the random orbit of an iterated function system of isometries on an unbounded metric space. We prove under necessary conditions that the random orbit \escapes to infinity" and we also give a simple geometric description of these conditions in the Euclidean and hyperbolic spaces. The results generalises the results of Paper I.</p><p>In the third paper we consider the statistical behaviour of the reversed random orbit corresponding to an iterated function system consisting of a finite number of Euclidean isometries of <b>R</b>n. We give a new proof of the central limit theorem and weak invariance principles, and we obtain the law of the iterated logarithm. Our results generalise immediately to Markov chains. Our proofs are based on dynamical systems theory rather than a purely probabilistic approach.</p><p>In the fourth paper we obtain a suficient condition for the recurrence of a perturbed (one-sided) random walk on the real line. We apply this result to the study of an iterated function system depending on a parameter and defined on the open unit disk in the complex plane. </p>
3

Random iteration of isometries

Ådahl, Markus January 2004 (has links)
This thesis consists of four papers, all concerning random iteration of isometries. The papers are: I. Ambroladze A, Ådahl M, Random iteration of isometries in unbounded metric spaces. Nonlinearity 16 (2003) 1107-1117. II. Ådahl M, Random iteration of isometries controlled by a Markov chain. Manuscript. III. Ådahl M, Melbourne I, Nicol M, Random iteration of Euclidean isometries. Nonlinearity 16 (2003) 977-987. IV. Johansson A, Ådahl M, Recurrence of a perturbed random walk and an iterated function system depending on a parameter. Manuscript. In the first paper we consider an iterated function system consisting of isometries on an unbounded metric space. Under suitable conditions it is proved that the random orbit {Zn} ∞n=0, of the iterations corresponding to an initial point Z0, “escapes to infinity" in the sense that P(Zn Є K) → 0, as n → ∞ for every bounded set K. As an application we prove the corresponding result in the Euclidean and hyperbolic spaces under the condition that the isometries do not have a common fixed point. In the second paper we let a Markov chain control the random orbit of an iterated function system of isometries on an unbounded metric space. We prove under necessary conditions that the random orbit \escapes to infinity" and we also give a simple geometric description of these conditions in the Euclidean and hyperbolic spaces. The results generalises the results of Paper I. In the third paper we consider the statistical behaviour of the reversed random orbit corresponding to an iterated function system consisting of a finite number of Euclidean isometries of <b>R</b>n. We give a new proof of the central limit theorem and weak invariance principles, and we obtain the law of the iterated logarithm. Our results generalise immediately to Markov chains. Our proofs are based on dynamical systems theory rather than a purely probabilistic approach. In the fourth paper we obtain a suficient condition for the recurrence of a perturbed (one-sided) random walk on the real line. We apply this result to the study of an iterated function system depending on a parameter and defined on the open unit disk in the complex plane.

Page generated in 0.1432 seconds