Spelling suggestions: "subject:"rademacher functions"" "subject:"rademachers functions""
1 |
The law of the iterated logarithm for tail sumsGhimire, Santosh January 1900 (has links)
Doctor of Philosophy / Department of Mathematics / Charles N. Moore / The main purpose of this thesis is to derive the law of the iterated logarithm for tail sums in various contexts in
analysis. The various contexts are sums of Rademacher functions, general dyadic martingales, independent random variables and
lacunary trigonometric series. We name
the law of the iterated logarithm for tail sums as tail law of the iterated logarithm.
We first establish the tail law of the iterated logarithm for sums of Rademacher functions and obtain both upper and lower bound in it. Sum of Rademacher functions is a nicely behaved dyadic martingale. With the ideas from the Rademacher case, we then establish the tail
law of the iterated logarithm for general dyadic martingales. We obtain both upper and lower bound in the case of martingales. A lower
bound is obtained for the law of the iterated logarithm for tail sums of bounded symmetric independent random variables. Lacunary trigonometric series exhibit many of the properties of partial
sums of independent random variables. So we finally obtain
a lower bound for the tail law of the iterated logarithm for lacunary
trigonometric series introduced by Salem and Zygmund.
|
2 |
Subespaços complementados de espaços de Banach clássicos / Complemented subspaces of classical Banach spacesMelendez Caraballo, Blas, 1988- 27 August 2018 (has links)
Orientador: Jorge Tulio Mujica Ascui / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T12:08:37Z (GMT). No. of bitstreams: 1
MelendezCaraballo_Blas_M.pdf: 1140173 bytes, checksum: 61bc3f801fdfc8946dd6852692a39bfd (MD5)
Previous issue date: 2015 / Resumo: Em 1960, Pelczynski [1] provou que, se X é um dos espaços c0 ou lp, com p número real maior ou igual do que um. Então todo subespaço complementado de dimensão infinita de X é isomorfo a X. Outro resultado clássico de Pelczynski [1] afirma que se p é um número real maior do que um, então o espaço Lp[0,1] contém um subespaço complementado isomorfo a l2. Nosso objetivo é estudar os resultados deste tipo, e introduzir alguns problemas abertos. BIBLIOGRAFIA [1] A. Pelczynski, Projections in certain Banach spaces, Studia Methematica, 19 (1960), pág. 209-228 / Abstract: In 1960, Pelczynski [1] showed that if X is one of the spaces c0 or lp, p real number greater than or equal to one. Then each infinite dimensional subspace complemented in X is isomorphic to X. Another classical result of Pelczynski [1] states that if p is a real number greater that one, then the space Lp[0,1] contains a complemented subspace isomorphic to l2. Our aim is to study results of this kind, and to introduce some open problems. BIBLIOGRAFIA [1] A. Pelczynski, Projections in certain Banach spaces, Studia Methematica, 19 (1960), pág. 209-228 / Mestrado / Matematica / Mestre em Matemática
|
Page generated in 0.0904 seconds