• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and optoelectronic studies of lead chalcogenide thin films and nanocrystals

Akhtar, Javeed January 2010 (has links)
The work described herein deals with the synthesis and characterization of lead chalcogenide thin films and nanocrystals. The first part of thesis describes the properties of semiconductors followed by an analysis on the chemical vapour deposition and nanoparticulate formation. In the next part of thesis, single-source precursors of type thioselenophosphinato, selenoureato, dithiocarbamato and dithiocarbanato complexes of lead have been synthesised and characterised. As-synthesised compounds have been utilised for the fabrication of lead sulfide and lead selenide thin films by aerosol-assisted chemical vapour deposition as well as nanocrystals by colloidal injection method. Lead sulfide thin films were also deposited by liquid-liquid interface from lead dithiocarbanato at room temperature. The as grown thin films of lead sulfide and lead selenide have been characterised by XRD, SEM and energy dispersive x-ray (EDX) analysis. In the second part of the thesis, preparation of lead sulfide and lead selenide nanocrystals in olive oil at low growth temperatures (50-60°C) is described and have shown that by controlling experimental conditions, well-defined particles with tunable emission in mid and far-infrared region can be synthesised. Furthermore, compositionally-tuned PbSxSe1-x nanocrystals has also been prepared by adding controlled amount of sulur and selenium ingredients into lead oxide. Homogenous distribution of sulfur and selenium within alloyed nanocrystals is confirmed by transmission electron microscope studies. Moreover, attempts have been made to prepare quaternary (PbTe/Se/S) nanocrystals of lead chalcogenides and depth (1.9-5.8 nm) profile analysis by x-ray photoelectron spectroscopy confirmed the formation of core/shell/shell type structure i.e. PbTe/S/Se.
2

UNVEILING THE AMINE-THIOL MOLECULAR PRECURSOR CHEMISTRY FOR FABRICATION OF SEMICONDUCTING MATERIALS

Swapnil Dattatray Deshmukh (11146737) 22 July 2021 (has links)
<div>Inorganic metal chalcogenide materials are of great importance in the semiconducting field for various electronic applications such as photovoltaics, thermoelectrics, sensors, and many others. Compared to traditional vacuum processing routes, solution processing provides an alternate cost-effective route to synthesize these inorganic materials through its ease of synthesis and device fabrication, higher material utilization, mild processing conditions, and opportunity for roll-to-roll manufacturing. One such versatile solution chemistry involving a mixture of amine and thiol species has evolved in the past few years as a common solvent for various precursor dissolutions including metal salts, metal oxides, elemental metals, and chalcogens.</div><div><br></div><div>The amine-thiol solvent system has been used by various researchers for the fabrication of inorganic materials, but without the complete understanding of the chemistry involved in this system, utilizing its full potential, and overcoming any inherent limitations will be difficult. So, to identify the organometallic complexes and their reaction pathways, the precursor dissolutions in amine-thiol solutions, specifically for elemental metals like Cu, In and chalcogens like Se, Te were studied using X-ray absorption, nuclear magnetic resonance, infrared, and Raman spectroscopy along with electrospray ionization mass spectrometry techniques. These analyses suggested the formation of metal thiolate complexes in the solution with the release of hydrogen gas in the case of metal dissolutions confirming irreversibility of the dissolution. Insights gained for chalcogen dissolutions confirmed the formation of different species like monoatomic or polyatomic clusters when different amine-thiol pair is used for dissolution. Results from these analyses also identified the role of each component in the dissolution which allowed for tuning of the solutions by isolating the complexes to reduce their reactivity and corrosivity for commercial applications.</div><div><br></div><div>After identifying complexes in metal dissolution for Cu and In metals, the decomposition pathway for these complexes was studied using X-ray diffraction and gas chromatography mass spectrometry techniques which confirmed the formation of phase pure metal chalcogenide material with a release of volatile byproducts like hydrogen sulfide and thiirane. This allowed for the fabrication of impurity-free thin-film Cu(In,Ga)S2 material for use in photovoltaic applications. The film fabrication with reduced carbon impurity achieved using this solvent system yielded a preliminary promising efficiency beyond 12% for heavy alkali-free, low bandgap CuInSe2 material. Along with promising devices, by utilizing the understanding of the chalcogen complexation, a new method for CuInSe2 film fabrication was developed with the addition of selenide precursors and elemental selenium which enabled first-ever fabrication of a solution-processed CuInSe2 thin film with thickness above 2 μm and absence of any secondary fine-grain layer.</div><div><br></div><div>Along with thin-film fabrication, a room temperature synthesis route for lead chalcogenide materials (PbS, PbSe, PbTe) with controlled size, shape, crystallinity, and composition of nanoparticle self-assemblies was demonstrated. Micro-assemblies formed via this route, especially the ones with hollow-core morphology were subjected to a solution-based anion and cation exchange to introduced desired foreign elements suitable for improving the thermoelectric properties of the material. Adopting from traditional hot injection and heat up synthesis routes, a versatile synthesis procedure for various binary, ternary, and quaternary metal chalcogenide (sulfide and sulfoselenide) nanoparticles from elemental metals like Cu, Zn, Sn, In, Ga, and Se was developed. This new synthesis avoids the incorporation of impurities like O, Cl, I, Br arising from a traditional metal oxide, halide, acetate, or other similar metal salt precursors giving an opportunity for truly impurity-free colloidal metal chalcogenide nanoparticle synthesis.</div>

Page generated in 0.0564 seconds