• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 10
  • 1
  • 1
  • 1
  • Tagged with
  • 57
  • 57
  • 20
  • 18
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Angular leafspot of cucumber : systemic invasion of the host by Pseudomonas lachrymans and field studies of yield losses due to epiphytotics of the disease /

Pohronezny, Kenneth Louis January 1976 (has links)
No description available.
2

A Comprehensive Study into Quinone Outside Inhibitor Resistance in Cercospora Sojina from Mississippi Soybean

Standish, Jeffrey Russell 09 May 2015 (has links)
Frogeye leaf spot, caused by Cercospora sojina Hara, is a foliar disease affecting soybean (Glycine max (L.) Merr.), often managed by applications of quinone outside inhibitor (QoI) fungicides. In 2013 and 2014, symptomatic leaf samples were collected from Mississippi soybean fields leading to the collection of 634 mono-conidial C. sojina isolates. In vitro bioassays were performed to evaluate the sensitivity of 14 isolates plus a baseline. Resistant and sensitive isolates were characterized by determining the effective fungicide concentrations at which 50% of conidial germination was inhibited (EC50). Additionally, the molecular mechanism of resistance was determined for all 634 isolates. Greater than 93% of C. sojina isolates collected in Mississippi carried the G143A amino acid substitution indicating a shift to a QoI-resistant population throughout Mississippi soybean fields. Greenhouse studies confirmed that due to this amino acid substitution, symptoms caused by QoI-resistant isolates developed in spite of a QoI fungicide application.
3

Characterization, Inheritance, and Marker Identification of Potential Novel Genes Conditioning Resistance to Multiple Races of Cercospora Sojina K. Hara of Soybean (Glycine Max L.)

Blessitt, James Brewer 11 May 2013 (has links)
Soybean is an economically important crop. It is a selfertilized species grown on vast contiguous acres. These facts predispose soybean to disease epidemics. Cercospora sojina, causal agent of frogeye leaf spot, has reduced United States soybean productivity 0.3 percent on average per year between 2008 and 2010. Several states have reported the pathogen developing resistance to the strobilurin class of fungicides. To date genetic host resistance has been identified as single dominant genes (Rcs1, Rcs2, and Rcs3). However, the lifespans of Rcs1 and Rcs2 were 10 and 16 years respectively. Currently, the Rcs3 locus has been utilized in all major soybean breeding programs of the US and has been for over 20 years. Seventyive accessions of soybean were found to exhibit resistance to multiple races of C. sojina while not exhibiting the Rcs3 haplotype. Twenty of these plant introductions (PIs) were screened by six races within the new race classification system of C. sojina representing all domestic variability of the pathogen. Two agronomically favorable PIs, PI398993 and PI399068, were found in this research to exhibit broad resistance to sources documented to contain most domestic variability of the pathogen. Two segregating populations were developed by crossing PI398993 x ‘Blackhawk’ and PI399068 x Blackhawk. Segregation ratios of F2 as well as F2:3 family seedling screens of both populations indicating single dominant gene action in both resistance sources. Single marker analysis indicated markers associated with the phenotype were indeed on chromosome 16 (MLG J), but possibly beyond Rcs3 in both sources. Interval mapping placed the highest probability of the resistance loci near SNP_171 and SNP_368, 72.86 and 72.48 cM respectively, but distal to the Rcs3 locus. Analysis of reaction ratings also indicated significant influence on phenotype was also associated with markers located at or beyond the published Rcs3 locus. The evidence in this research supports the hypothesis that both PIs may contain a resistance loci, potentially different than Davis, but within the same gene cluster. Equally as likely, the resistance could prove allelic to Davis.
4

Impacts, Prevalence, and Spatio-Temporal Patterns of Lily Leaf Spot Disease on Lilium Grayi (Liliaceae), Gray’s Lily

Ingram, Russell J., Donaldson, James T., Levy, Foster 01 October 2018 (has links)
Lily leaf spot, a fungal foliar disease caused by Pseudocercosporella inconspicua, leads to premature senescence of aboveground tissues in Lilium grayi. At Roan Mountain, North Carolina/Tennessee, the disease was most prevalent and most severe in seedlings and juveniles. In the two growing seasons assessed, 59 and 70% of mature plants experienced disease-induced premature senescence. Plants with disease lesions on seed capsules matured fewer capsules and had fewer seeds per capsule, and seeds had reduced viability. Disease prevalence over the growing season followed a sigmoidal pattern typical of polycyclic epidemics. Plants with low and high disease severity occurred in clusters whose locations were stable across growing seasons. Prior to the recent description of lily leaf spot, L. grayi was already considered threatened or endangered in each of the three states where it naturally occurs. Therefore, this infectious disease poses conservation and management difficulties because increases in plant density can be expected to lead to enhanced disease transmission. Lily leaf spot of L. grayi is best characterized as an annually recurring epidemic because of high prevalence rates, strong impacts on all life stages, and reductions in seed production and viability.
5

IDENTIFYING MANAGEMENT STRATEGIES FOR FROGEYE LEAF SPOT IN ILLINOIS

Butera, Margaret Theresa 01 December 2013 (has links)
Cercospora sojina, the causal agent of frogeye leaf spot, is an important pathogen of soybean that reduces soybean yield by an average of 9.1 million bushels each year in the United States. Management strategies include using resistant cultivars and fungicide applications. Hill plots were used to evaluate over 600 commercial and public varieties for resistance or susceptibility to C. sojina. Each hill plot was spaced 0.6 m apart, planted with 10 seeds from a single cultivar, and was replicated three times. At flowering, the plants were inoculated by spraying a spore solution across all plants in the field. Hill plots were rated for disease severity at 14, 28 and 35 days after inoculation. There were 259 varieties that were susceptible to FLS, with 181 varieties with intermediate resistance, and 161 resistant varieties. A greenhouse trial evaluated fungicides and their ability to hinder symptom production and the duration of this suppression. Spores of the pathogen were applied at 7, 14 and 21 days after application of fungicides. Disease ratings were collected at 5 weekly intervals following inoculation. The significantly different treatment with the lowest disease ratings was the fungicide Stratego YLD (a strobilurin and triazole mix). The fungicide Tilt was found to be significantly different from all other treatments in the number of lesions on a single tracked leaf, including the non-treated control. These results can be used to recommend to producers available varieties.
6

Fitness and Management of Site-specific Fungicide Resistant Cercospora beticola Isolates from Sugar Beet

Liu, Yangxi January 2020 (has links)
Cercospora leaf spot (CLS), caused by the fungal pathogen Cercospora beticola, is one of the most destructive foliar diseases on sugar beet. It severely affects productivity and profitability of the sugar beet industry. CLS is managed by using resistant cultivars, rotating with non-host crops, and applying effective fungicides in a timely manner. In North Dakota and Minnesota, site-specific fungicides, such as quinone outside inhibitors (QoIs) and demethylation inhibitors (DMIs), had been widely and extensively applied to control C. beticola which has developed resistances to these fungicides. The mycelial growth, spore production, spore germination, and aggressiveness of QoI and/or DMI resistant isolates were compared to sensitive isolates in a laboratory and greenhouse study. Results indicated that the QoI and/or DMI resistant isolates had a relatively slower disease development on sugar beet leaves due to their fitness penalty in sporulation and mycelial growth but still caused high disease severities as sensitive isolates. Fungicides were evaluated to manage the QoI and/or DMI resistant C. beticola isolates in a sensitivity study and a greenhouse and field study. Copper-based multisite activity fungicides were evaluated for controlling fungicide resistant C. beticola. The mean EC50 values for nine copper-based chemicals ranged from 1 to 10 ug/ml using a spore germination assay. In a greenhouse study, Fertileader (a copper-based fertilizer) caused leaf injury and was not evaluated, but the other tested chemicals provided significantly better control of CLS compared to the control check with Badge X2, Champion, Cuprofix, COCS and Ridomil having significantly small AUDPC. Newer site specific fungicides with different modes of action that have never been used for CLS management in North Dakota and Minnesota were also tested. The mean EC50 values were 4.9, 33.1, 99.4, and 481.6 ug/ml using mycelial growth assay and 5.7, 4.1, 9.2, and 4.2 ug/ml using spore germination assay for cyprodinil, fluazinam, pydiflumetofen, and Chlorothalonil, respectively. In a two-year field study, all the fungicides resulted in significantly better disease control, significantly higher beet tonnage, and recovered sucrose compared to the nontreated check. However, none of tested fungicide treatments performed better than the industry?s standard fungicide, triphenyltin hydroxide.
7

EVALUATION OF SOYBEAN DISEASES AND PESTS USING TWO ADVANCED BREEDING POPULATIONS

Lee, Yi-Chen 01 September 2021 (has links) (PDF)
Soybean (Glycine max [L.] Merr.) is one of the most important crops in the world. The average annual yield losses due to soybean diseases and pests are estimated to be around 11% in the United States. Soybean yield losses due to sudden death syndrome (SDS), caused by the fungus Fusarium virguliforme O'Donnell & T. Aoki have been problematic in majority of the soybean producing states. In recent years, reniform nematode (RN, Rotylenchulus reniformis Linford and Oliveira) and frogeye leaf spot (FLS), caused by the fungus Cercospora sojina K. Hara have emerged as a major problem in the southern soybean producing states. Planting resistant cultivars is one of the most cost-efficient methods in managing SDS, RN, and FLS, therefore it would be critical to identify and map the quantitative trait loci (QTL) that underlie their resistances. Two soybean populations were evaluated in this study. The ‘Essex’ × ‘Forrest’ 77 near-isogenic lines were screened in the field to evaluate the disease index of SDS. The Essex × Forrest and ‘Flyer’ × ‘Hartwig’ recombinant inbred lines were screened in the greenhouse to assess the reproduction index of RN and the disease severity of FLS. The BARCSoySNP6k chip was used to genotype the two populations. Four QTL that underlie SDS resistances were mapped in the same region as Rfv06-01, Rfv06-02, Rfv13-01, and Rfv19-01. The Rfv06-02 interval in this study was smaller than the one previously reported. Rrr08-01, Rrr13-01, Rrr15-01, Rrr18-01, and Rrr18-02 were reported to confer resistances to RN. Rrr08-01, Rrr13-01 and Rrr15-01 were novel whereas Rrr18-01, and Rrr18-02 were mapped in previous studies. cqSCN-001 (soybean cyst nematode, Heterodera glycines Ichinohe) was identified in the same region as Rrr18-01, and Rrr18-02 whereas cqSCN-006 was identified in the same region as Rrr15-01. These findings provide further evidence that there are common sources of genetic resistances to RN and SCN. Rcs15-01 and Rcs15-02 were reported to confer resistances to FLS. Rcs15-01 was novel and Rcs15-02 was mapped at the same region as an Rcs mapped in a previous study. This indicated that Rcs15-02 has dual resistances to C. sojina races. Candidate genes were inferred in this study. The QTL mapped in this study could potentially be used in soybean breeding programs that aim to introgress genetic resources that confer resistances to SDS, RN, and FLS.
8

Determining Fitness Cost in Qoi-Resistant Isolates of the Frogeye Leaf Spot Pathogen

Brochard, Nicole Rochelle 06 May 2017 (has links)
Frogeye leaf spot is a foliar disease of soybean caused by Cercospora sojina Hara, which until recently had been successfully managed by quinone outside inhibitor (QoI) fungicides. After widespread resistance to the QoI fungicides was reported throughout Mississippi, the next step in characterizing C. sojina was to study the fitness of selected isolates. Fitness measurements of resistance stability, colony growth, conidia production and germination, and virulence were assessed. A phylogenetic analysis was also conducted to assess the genetic similarity of the QoI-resistant and -sensitive C. sojina isolates. All isolates remained stable in terms of QoI resistance. Results of all fitness measurements indicated no significant differences between the QoI-resistant and -sensitive C. sojina isolates. The phylogenetic analysis supported these results revealing similarity between QoI-resistant and -sensitive C. sojina isolates. Based on these results no indication of a fitness cost is associated with QoI resistance in C. sojina isolates from Mississippi soybean.
9

Breeding of Cool-Season Forage Grasses for Abiotic and Biotic Stress Tolerance in the Southern United States

Billman, Eric Douglas 14 December 2018 (has links)
Abiotic stress tolerance and biotic stress resistance have long been targets for trait improvement in the field of plant breeding. To date, much of the target crop focus has been centered on commodity crops such as corn, soybean, wheat, and rice. However, little work has been conducted on improvement of these traits in forage grasses. This is due to a number of issues, particularly that most species are obligately outcrossing, the traits are governed by many genes at unknown loci, and are greatly affected by environmental variation. This creates major complications in successfully selecting and breeding populations of forage grasses tolerant to extreme high or low temperatures, as well as disease resistance. Recurrent phenotypic selection was used to select elite individuals of annual ryegrass (Lolium multiflorum Lam.) and orchardgrass (Dactylis glomerata L.) that expressed improved germination at high temperature. Selections were conducted within growth chambers at fixed temperature and light regimes (40/30 DEGREES C, 12/12 hr, light/darkness) to eliminate environmental variation. Following three cycles of selection, we observed gains (P LESSTHAN 0.001) in selection over the base population for both species. Annual ryegrass mean cumulative germination for cycle 3 peaked at 45.8%, and orchardgrass mean cumulative germination for cycle 3 peaked at 82.67%. Further selection of annual ryegrass for freezing tolerance was also conducted. Flats of unselected germplasm were grown to the three-leaf stage, then frozen for nine hours. Significant differences (P LESSTHAN 0.05) in freezing tolerance were observed between selected germplasm in both cycle 1 (0.076%) and cycle 2 (0.125%) over the unselected cycle 0 (0.025%). Finally, initial stages of resistance breeding work were conducted involving gray leaf spot (causal agent Pyricularia grisea Cke. [Sacc.]) on annual ryegrass. Isolates of the pathogen were obtained and stored for future use. It was determined that the actual pathogen species responsible was Pyricularia oryzae Cavara. Future work for annual ryegrass and orchardgrass germplasm that germinates at high temperatures will involve variety testing and cultivar release. Freezing tolerance and disease resistance work will require larger-scale screening methodology that was able to be conducted in this work to acquire sufficient population sizes for breeding.
10

Genetic Mapping and Components of Resistance to Cercospora Zeae-Maydis in Maize

Gordon, Stuart G. 29 January 2003 (has links)
No description available.

Page generated in 0.0368 seconds