• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Famtile: An Algorithm For Learning High-level Tactical Behavior From Observation

Stensrud, Brian 01 January 2005 (has links)
This research focuses on the learning of a class of behaviors defined as high-level behaviors. High-level behaviors are defined here as behaviors that can be executed using a sequence of identifiable behaviors. Represented by low-level contexts, these behaviors are known a priori to learning and can be modeled separately by a knowledge engineer. The learning task, which is achieved by observing an expert within simulation, then becomes the identification and representation of the low-level context sequence executed by the expert. To learn this sequence, this research proposes FAMTILE - the Fuzzy ARTMAP / Template-Based Interpretation Learning Engine. This algorithm attempts to achieve this learning task by constructing rules that govern the low-level context transitions made by the expert. By combining these rules with models for these low-level context behaviors, it is hypothesized that an intelligent model for the expert can be created that can adequately model his behavior. To evaluate FAMTILE, four testing scenarios were developed that attempt to achieve three distinct evaluation goals: assessing the learning capabilities of Fuzzy ARTMAP, evaluating the ability of FAMTILE to correctly predict expert actions and context choices given an observation, and creating a model of the expert's behavior that can perform the high-level task at a comparable level of proficiency.
2

Learning Human Behavior From Observation For Gaming Applications

Moriarty, Christopher 01 January 2007 (has links)
The gaming industry has reached a point where improving graphics has only a small effect on how much a player will enjoy a game. One focus has turned to adding more humanlike characteristics into computer game agents. Machine learning techniques are being used scarcely in games, although they do offer powerful means for creating humanlike behaviors in agents. The first person shooter (FPS), Quake 2, is an open source game that offers a multi-agent environment to create game agents (bots) in. This work attempts to combine neural networks with a modeling paradigm known as context based reasoning (CxBR) to create a contextual game observation (CONGO) system that produces Quake 2 agents that behave as a human player trains them to act. A default level of intelligence is instilled into the bots through contextual scripts to prevent the bot from being trained to be completely useless. The results show that the humanness and entertainment value as compared to a traditional scripted bot have improved, although, CONGO bots usually ranked only slightly above a novice skill level. Overall, CONGO is a technique that offers the gaming community a mode of game play that has promising entertainment value.
3

Social network sites as learning environments and their implications for mental health

Huseenoeder, Felix S. 29 February 2024 (has links)
Social network sites (SNSs) have become ubiquitous around the globe and interwoven with all aspects of life. In this article, I will argue that the communicative infrastructure of SNSs, i.e., all SNS-elements that allow users to communicate, is a key element for understanding their impact as it creates environments in which users, their behaviors, and social interactions are embedded. These digital environments facilitate and encourage fundamental mechanisms of implicit learning from feedback as well as observation in an unprecedented way. I will discuss how these technologybased learning environments impact the mental health of their users, e.g., by linking negative online feedback to depression and following influencers to disturbed eating. The article ends with a conclusion that emphasizes the advantages of understanding SNSs as environments in order to reflect the complexity, relevance, and ubiquitousness of the phenomenon.

Page generated in 0.1417 seconds