Spelling suggestions: "subject:"least angle regression"" "subject:"yeast angle regression""
1 |
Choosing summary statistics by least angle regression for approximate Bayesian computationFaisal, Muhammad, Futschik, A., Hussain, I., Abd-el.Moemen, M. 01 February 2016 (has links)
Yes / Bayesian statistical inference relies on the posterior distribution. Depending on the model, the posterior can be more or less difficult to derive. In recent years, there has been a lot of interest in complex settings where the likelihood is analytically intractable. In such situations, approximate Bayesian computation (ABC) provides an attractive way of carrying out Bayesian inference. For obtaining reliable posterior estimates however, it is important to keep the approximation errors small in ABC. The choice of an appropriate set of summary statistics plays a crucial role in this effort. Here, we report the development of a new algorithm that is based on least angle regression for choosing summary statistics. In two population genetic examples, the performance of the new algorithm is better than a previously proposed approach that uses partial least squares. / Higher Education Commission (HEC), College Deanship of Scientific Research, King Saud University, Riyadh Saudi Arabia - research group project RGP-VPP-280.
|
2 |
Chaos polynomial creux et adaptatif pour la propagation d'incertitudes et l'analyse de sensibilitéBlatman, Géraud 09 October 2009 (has links) (PDF)
Cette thèse s'insère dans le contexte général de la propagation d'incertitudes et de l'analyse de sensibilité de modèles de simulation numérique, en vue d'applications industrielles. Son objectif est d'effectuer de telles études en minimisant le nombre d'évaluations du modèle, potentiellement coûteuses. Le présent travail repose sur une approximation de la réponse du modèle sur la base du chaos polynomial(CP), qui permet de réaliser des post-traitements à un coût de calcul négligeable. Toutefois, l'ajustement du CP peut nécessiter un nombre conséquent d'appels au modèle si ce dernier dépend d'un nombre élevé de paramètres (e.g. supérieur à 10). Pour contourner ce problème, on propose deux algorithmes pour ne sélectionner qu'un faible nombre de termes importants dans la représentation par CP, à savoir une procédure de régression pas-à-pas et une procédure basée sur la méthode de Least Angle Regression (LAR). Le faible nombre de coefficients associés aux CP creux obtenus peuvent ainsi être déterminés à partir d'un nombre réduit d'évaluations du modèle. Les méthodes sont validées sur des cas-tests académiques de mécanique, puis appliquées sur le cas industriel de l'analyse d'intégrité d'une cuve de réacteur à eau pressurisée. Les résultats obtenus confirment l'efficacité des méthodes proposées pour traiter les problèmes de propagation d'incertitudes et d'analyse de sensibilité en grande dimension.
|
Page generated in 0.1019 seconds