• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Gauss-newton Based Learning For Fully Recurrent Neural Networks

Vartak, Aniket Arun 01 January 2004 (has links)
The thesis discusses a novel off-line and on-line learning approach for Fully Recurrent Neural Networks (FRNNs). The most popular algorithm for training FRNNs, the Real Time Recurrent Learning (RTRL) algorithm, employs the gradient descent technique for finding the optimum weight vectors in the recurrent neural network. Within the framework of the research presented, a new off-line and on-line variation of RTRL is presented, that is based on the Gauss-Newton method. The method itself is an approximate Newton's method tailored to the specific optimization problem, (non-linear least squares), which aims to speed up the process of FRNN training. The new approach stands as a robust and effective compromise between the original gradient-based RTRL (low computational complexity, slow convergence) and Newton-based variants of RTRL (high computational complexity, fast convergence). By gathering information over time in order to form Gauss-Newton search vectors, the new learning algorithm, GN-RTRL, is capable of converging faster to a better quality solution than the original algorithm. Experimental results reflect these qualities of GN-RTRL, as well as the fact that GN-RTRL may have in practice lower computational cost in comparison, again, to the original RTRL.
2

Étude d’algorithmes de restauration d’images sismiques par optimisation de forme non linéaire et application à la reconstruction sédimentaire. / Seismic images restoration using non linear optimization and application to the sedimentary reconstruction.

Gilardet, Mathieu 19 December 2013 (has links)
Nous présentons une nouvelle méthode pour la restauration d'images sismiques. Quand on l'observe, une image sismique est le résultat d'un système de dépôt initial qui a été transformé par un ensemble de déformations géologiques successives (flexions, glissement de la faille, etc) qui se sont produites sur une grande période de temps. L'objectif de la restauration sismique consiste à inverser les déformations pour fournir une image résultante qui représente le système de dépôt géologique tel qu'il était dans un état antérieur. Classiquement, ce procédé permet de tester la cohérence des hypothèses d'interprétations formulées par les géophysiciens sur les images initiales. Dans notre contribution, nous fournissons un outil qui permet de générer rapidement des images restaurées et qui aide donc les géophysiciens à reconnaître et identifier les caractéristiques géologiques qui peuvent être très fortement modifiées et donc difficilement identifiables dans l'image observée d'origine. Cette application permet alors d'assister ces géophysiciens pour la formulation d'hypothèses d'interprétation des images sismiques. L'approche que nous introduisons est basée sur un processus de minimisation qui exprime les déformations géologiques en termes de contraintes géométriques. Nous utilisons une approche itérative de Gauss-Newton qui converge rapidement pour résoudre le système. Dans une deuxième partie de notre travail nous montrons différents résultats obtenus dans des cas concrets afin d'illustrer le processus de restauration d'image sismique sur des données réelles et de montrer comment la version restaurée peut être utilisée dans un cadre d'interprétation géologique. / We present a new method for seismic image restoration. When observed, a seismic image is the result of an initial deposit system that has been transformed by a set of successive geological deformations (folding, fault slip, etc) that occurred over a large period of time. The goal of seismic restoration consists in inverting the deformations to provide a resulting image that depicts the geological deposit system as it was in a previous state. With our contribution, providing a tool that quickly generates restored images helps the geophysicists to recognize geological features that may be too strongly altered in the observed image. The proposed approach is based on a minimization process that expresses geological deformations in terms of geometrical constraints. We use a quickly-converging Gauss-Newton approach to solve the system. We provide results to illustrate the seismic image restoration process on real data and present how the restored version can be used in a geological interpretation framework.

Page generated in 0.1264 seconds