• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolationszuverlässigkeit und Lebensdauermodellierung für die Gehäusekonstruktion von Halbleitersensoren

Schaller, Rainer Markus 14 January 2019 (has links)
Die vorliegende Arbeit befasst sich mit der Isolationszuverlässigkeit und Lebensdauermodellierung für die Gehäusekonstruktion von Halbleitersensoren. Bei den untersuchten Gehäusekonstruktionen handelt es sich insbesondere um Stromsensoren, die auf der Messung des Magnetfeldes eines stromdurchflossenen Leiters basieren. Dabei werden spannungsinduzierte Fehlermechanismen und ihre Auswirkung innerhalb des Sensors diskutiert und ein Lebensdauermodell für den Sensor beschrieben, das auf dem Fehlermechanismus der anodischen Oxidation basiert.:1 THEORETISCHE GRUNDLAGEN DER SENSORKONSTRUKTION 1.1 Grundlagen der Isolationskoordination 1.2 Grundlagen der Sensorkonzeption 1.3 Stand der Technik 1.4 Aufgaben für die Gehäuseentwicklung 2 SPANNUNGSINDUZIERTE FEHLERMECHANISMEN 2.1 Teilentladung 2.2 Dielektrischer Durchbruch 2.3 Chemische Umsetzung von Si 2.4 Migrationsmechanismen 2.5 Leckstrom 3 LEBENSDAUERMODELLIERUNG 3.1 Beschleunigte Alterung 3.2 Modellfunktion für die Lebensdauer 3.3 Lebensdauerkalkulationen
2

Modellierung und Simulation des Systemverhaltens nasslaufender Lamellenkupplungen

Rao, Guang 04 October 2011 (has links) (PDF)
Nasslaufende Lamellenkupplungen finden im Automobil immer mehr Anwendungen. Im Bezug auf die steigenden Motorleistungen, die Gewichtsoptimierungsmaßnamen und die hohen Ansprüche an Fahrdynamik nimmt die geforderte Leistungsdichte einer nasslaufenden Lamellenkupplung ständig zu. Die Lamellenkupplung wird oft nahe an ihrer Belastungsgrenze ausgelegt. Außerdem wachsen gleichzeitig die Anforderungen an ihre Schaltdynamik, das Komfortverhalten und die Lebensdauer. Schwerpunkt dieser Arbeit ist die Modellierung und Simulation von Reibung und Verschleiß nasslaufender Lamellenkupplungen, insbesondere der mit dem Papierreibbelag. Ein umfassendes Verständnis für die Reibungsvorgänge und Verschleißmechanismen stellt die Grundvoraussetzung für eine optimale Entwicklung der nasslaufenden Lamellenkupplung dar. Zur Lösung der gestellten Aufgabe werden die wichtigsten Einflussgrößen auf das tribolgische System der Lamellenkupplung charakterisiert und die Wirkungen der tribologischen Beanspruchungsgrößen identifiziert. Zudem werden verschiedene Simulationsmodelle mit unterschiedlicher Modellierungstiefe erstellt. Dazu gehören Reibmodelle, Wärmeflussmodelle sowie Lebensdauermodelle, wobei die Reib- und Wärmeflussmodelle für die Lebensdauermodelle benötigt werden. Die hergeleiteten Modelle werden in die Simulationsumgebung implementiert und mit Hilfe eines Prüfstandsversuches verifiziert. Die validierten Modelle können für die Systemoptimierung und die Lebensdauerabsicherung der nasslaufenden Lamellenkupplungen effizient eingesetzt werden. Dies kann eine deutliche Reduktion der Entwicklungszeit sowie der Versuchskosten ermöglichen.
3

Lebensdauermodellierung für gesinterte Silberschichten in der leistungselektronischen Aufbau- und Verbindungstechnik durch isotherme Biegeversuche als beschleunigte Ermüdungstests

Heilmann, Jens 06 February 2020 (has links)
Gesintertes Silber (SAG) stellt eines der vielversprechendsten Materialien für Hochtemperaturanwendungen in der Leistungselektronik dar. Im Vergleich zu konventionellen Loten sind die mechanischen und thermischen Vorteile enorm, allerdings hochgradig prozessabhängig. Zusammen mit den relativ zeitintensiven Ermüdungstestmethoden ist das die Ursache, dass es aktuell nur wenige Lebensdauermodelle dazu gibt. In dieser Arbeit wird am Beispiel solcher SAG-Proben ein mechanisch beschleunigter, isothermer Biegeversuch vorgestellt, welcher das Potenzial hat, die zeitkritischen Temperatur- oder Lastwechselversuche zu ersetzen. Zum Vergleich wurde ein Temperaturwechseltest als Referenzversuch durchgeführt. Hierzu wird zunächst der Stand der Technik des Silber-Sinterns aufgezeigt, wobei der Schwerpunkt auf der mechanischen Materialcharakterisierung liegt.Wo das elastische Verhalten als näherungsweise allein porositätsabhängig gelten kann, ist die inelastische Dehnung noch unzureichend untersucht. Besonders die zeitabhängige inelastische Dehnung (Kriechen) zeigt noch kein vollständig konsistentes Bild, wodurch auch die Fehlermechanismen und deren Gewichtung noch nicht grundsätzlich als geklärt gelten können. Die gängigsten Belastungstests, welche in der Literatur zu finden sind, haben schwerwiegende Nachteile. Der hohe Zeitbedarf, die teils schwer quantifizierbaren Fehlerparameter und die fehlende Einstellmöglichkeit des Verhältnisses Kriechdehnung zu plastischer Dehnung sind hier im Besonderen zu nennen. Der rein dehnungsgesteuerte Biegeversuch hat diese Nachteile nicht. Über die Biegegeschwindigkeit ließe sich der Kriechanteil nahezu beliebig erhöhen (ggf. unter Nutzung von Haltezeiten). Die Biegeversuche wurden isotherm bei fünf Temperaturen von 22◦C bis 125◦C mit je drei Amplituden und drei Biegegeschwindigkeiten durchgeführt. Schlecht gesinterte Proben machten sich reproduzierbar als Frühausfall bemerkbar, so dass sich die Methode bereits gleich zu Beginn als hervorragender Qualitätstest bewährte. In puncto Ermüdung konnte ein stabiles und reproduzierbares Ausfallverhalten in Form von vergleichbaren Weibull-Formfaktoren und Ausfallbildern in den metallografischen Schliffen gefunden werden. Mit den Daten der Biegeversuche wurde ein fehlerphysikalisches Lebensdauermodell (Coffin-Manson) aufgestellt, welches erfolgreich den Ausfall des Temperaturwechseltests als Referenzversuch vorhersagen konnte. / Sintered silver (SAG) as die attach material is one of the promising solutions to exploit the advantages of high-gap semiconductors in power electronics. The mechanical and thermal properties are far superior to solders, but severely process-dependent. Combined with the time requirements of the state of the art (SoA) fatigue test methods this is most likely the reason for the lack of profound reliability studies yet. This thesis presents an isothermal bending test, which has the ability to replace the time-consuming thermal shock test as primary fatigue experiment for physics of failure based (PoF) lifetime models. A benchmark against a conventional thermal cycling test was done. The state of the art of the silver-sintering technique will be given with focus on the mechanical material characterization. While the elastic properties are mostly porosity-dependent, the inelastic properties are insufficiently examined yet. Especially the creep does not show a consistent image, what leads to many questions regarding the failure mechanism. The most common fatigue tests in the literature do have serious disadvantages. The time-consumption is high, the failure parameter can hardly be quantified and the ratio of plasticity to creep cannot be adjusted easily. The pure mechanical bending test does not have those disadvantages. By changing the bending-speed and the addition of holding times, the creep can be adjusted almost at will. The bending-experiments were conducted at five different temperatures between 22°C and 125°C and with three bending amplitudes as well as three speeds. Insufficiently sintered samples could be identified very early. This already proofed the value of the test as a quality test. Furthermore, a stable and repeatable fatigue behaviour could be observed, what was given by stable Weibull-exponents and repeatable cross sections. A lifetime-model was established by usage of the bending-test-data, what eventually predicted successfully the lifetime of a thermal cycling reference test.
4

Modellierung und Simulation des Systemverhaltens nasslaufender Lamellenkupplungen

Rao, Guang 16 September 2011 (has links)
Nasslaufende Lamellenkupplungen finden im Automobil immer mehr Anwendungen. Im Bezug auf die steigenden Motorleistungen, die Gewichtsoptimierungsmaßnamen und die hohen Ansprüche an Fahrdynamik nimmt die geforderte Leistungsdichte einer nasslaufenden Lamellenkupplung ständig zu. Die Lamellenkupplung wird oft nahe an ihrer Belastungsgrenze ausgelegt. Außerdem wachsen gleichzeitig die Anforderungen an ihre Schaltdynamik, das Komfortverhalten und die Lebensdauer. Schwerpunkt dieser Arbeit ist die Modellierung und Simulation von Reibung und Verschleiß nasslaufender Lamellenkupplungen, insbesondere der mit dem Papierreibbelag. Ein umfassendes Verständnis für die Reibungsvorgänge und Verschleißmechanismen stellt die Grundvoraussetzung für eine optimale Entwicklung der nasslaufenden Lamellenkupplung dar. Zur Lösung der gestellten Aufgabe werden die wichtigsten Einflussgrößen auf das tribolgische System der Lamellenkupplung charakterisiert und die Wirkungen der tribologischen Beanspruchungsgrößen identifiziert. Zudem werden verschiedene Simulationsmodelle mit unterschiedlicher Modellierungstiefe erstellt. Dazu gehören Reibmodelle, Wärmeflussmodelle sowie Lebensdauermodelle, wobei die Reib- und Wärmeflussmodelle für die Lebensdauermodelle benötigt werden. Die hergeleiteten Modelle werden in die Simulationsumgebung implementiert und mit Hilfe eines Prüfstandsversuches verifiziert. Die validierten Modelle können für die Systemoptimierung und die Lebensdauerabsicherung der nasslaufenden Lamellenkupplungen effizient eingesetzt werden. Dies kann eine deutliche Reduktion der Entwicklungszeit sowie der Versuchskosten ermöglichen.

Page generated in 0.0645 seconds