• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

JÄMFÖRELSE AV VÄNSTER FÖRMAKSVOLYM I APIKAL TVÅKAMMARPROJEKTION, INSPELADE MED TVÅ OLIKA ULTRALJUDS GIVARE (S5-1 OCH X5-1)

Latifpour, Nasrin January 2018 (has links)
Abstrakt: Vänster förmaksstorlek har prognostisk betydelse inom kardiologi. Det finns generellt enighet om att vänster förmaksvolymmätning (VFV) är det bästa mätmåttet av vänster förmaksstorlek. För närvarande används S5-1 som är en phased array givare, som första val, för att avbilda 2-dimensionella två- och fyrkammarvyer. Matrix array givaren X5-1 är ett praktiskt kliniskt alternativ för insamling av samma 2D projektioner men den har inte utvärderats på ett adekvat sätt mot S5-1 givare avseende VFV. Syftet med studien är att undersöka om det föreligger någon statistisk signifikant skillnad vid bestämning av VFV i apikal tvåkammarvy beroende på val av givare. Studien omfattade 50 patienter som var remitterade för en ekokardografisk undersökning på avdelningen för klinisk fysiologi och nuklearmedicin på Skånes Universitetssjukhus i Malmö. Ekokardiografiska bilder, insamlades med båda givarna, från både patienter med normal och abnormal vänster förmaksstorlek som hade sinusrytm. VFV mättes med Simpsons biplanmetod efter gällande amerikanska och europeiska riktlinjer. Det fanns en signifikant korrelation mellan medelvärdet av VFV, mätta på bilder som erhållits med de två olika insamlingsmetoderna (r =0,98, P 0,0001). Den utförda Bland-Altmananalysen visade också en statistiskt signifikant överensstämmelse i VFV mätning mellan de två insamlingsmetoderna. Studien visade att X5-1 givaren kan vara ett praktiskt alternativ för att erhålla 2D tvåkammarprojektion på ett mer tidseffektivt sätt jämfört med S5-1 givaren. / Abstract: Left atrial size has a prognostic significance in cardiology.There is ecumenical agreement that measurement of left atrial volume (LAV) is the best way to evaluate the left atrial size. Currently, S5-1, a phased array transducer, is used as the first choice to depict the 2-dimensional (2D) two- and four apical chamber views. X5-1, a matrix array transducer, is a practical clinical option for collecting the same 2D projections, but it has not been adequately assessed against the S5-1 transducer with LAV in consideration. The purpose of the present study was to investigate whether there is any statistically significant difference in the determination of LAV in apical two chamber views depending on the choice of transducer. The study included 50 patients who were referred for an echocardiographic examination at the Department of Clinical Physiology and Nuclear Medicine at Skåne University Hospital in Malmö. Echocardiographic images collected with both transducers, from patients with both normal and abnormal left atrial sizes and with sinus rhythm. LAV was measured using Simpson's biplane method according to the current American Society of Echocardiography (ASE) and European Association of Cardiovascular Imaging (EACVI) guidelines. There was a significant correlation between the mean of LAV, measured in images obtained by the two different transducers (r = 0.98, P 0.0001). The Bland-Altman analysis showed a statistically significant agreement in LAV measurement between the two methods. The X5-1 transducer is possibly a practical alternative to obtain 2D apical two-chamber projection in a more time efficient manner compared to the S5-1 transducer.
22

Semi-Automatic Analysis and Visualization of Cardiac 4D Flow CT

van Oosten, Anthony January 2022 (has links)
The data obtained from computational fluid dynamics (CFD) simulations of blood flow in the heart is plentiful, and processing this data takes time and the procedure for that is not straightforward. This project aims to develop a tool that can semi-automatically process CFD simulation data, which is based on 4D flow computed tomography (CT) data, with minimal user input. The tool should be able to time efficiently calculate flow parameters from the data, and automatically create overview images of the flow field while doing so, to aid the user's analysis process. The tool is coded using Python programming language, and the Python scripts are inputted to the application ParaView for processing of the simulation data.  The tool generates 3 chamber views of the heart by calculating three points from the given patient data, which represent the aortic and mitral valves, and the apex of the heart. A plane is generated that pass through these three points, and the heart is sliced along this plane to visualize 3 chambers of the heart. The camera position is also manipulated to optimize the 3 chamber view. The maximum outflow velocity over the cardiac cycle in the left atrial appendage (LAA) is determined by searching in a time range around the maximum outflow rate of the LAA in a cardiac cycle, and finding the highest velocity value that points away from the LAA in this range. The flow component analysis is calculated in the LAA and left ventricle (LV) by seeding particles in each at the start of the cardiac cycle, and tracking these particles forwards and backwards in time to determine where the particles end up and come from, respectively. By knowing these two aspects, the four different flow components of the blood can be determined in both the LAA and LV.  The tool can successfully create 3 chamber views of the heart model from three semi-automatically determined points, at a manipulated camera location. It can also calculate the maximum outflow velocity of the flow field over a cardiac cycle in the LAA, and perform a flow component analysis of the LAA and the LV by tracking particles forwards and backwards in time through a cardiac cycle. The maximum velocity calculation is relatively time efficient and produces results similar to those found manually, yet the output is dependent on the user-defined inputs and processing techniques, and varies between users. The flow component analysis is also time efficient, produces results for the LV that are comparable to pre-existing research, and produces results for the LAA that are comparable to the LVs' results. Although, the extraction process of the LAA sometimes includes part of the left atrium, which impacts the accuracy of the results. After processing each part, the tool creates a single file containing each part's main results for easier analysis of the patient data. In conclusion, the tool is capable of semi-automatically processing CFD simulation data which saves the user time, and it has thus met all the project aims

Page generated in 0.2039 seconds