Spelling suggestions: "subject:"legumes needs."" "subject:"legumes seeds.""
1 |
Over de erfelijkheid van de kleur der Zaadhuid van P̲h̲a̲s̲e̲o̲l̲u̲s̲ v̲u̲l̲g̲a̲r̲i̲s̲Kooiman, Havik Nicolaas, January 1920 (has links)
Thesis--Rijksuniversiteit te Utrecht. / "Literatuur":p.95-6.
|
2 |
Establishment of cell culture and characterization of seed coat pigments of vigna sinensis.January 2000 (has links)
Yip Mei-kuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 93-102). / Abstracts in English and Chinese. / Acknowledgments --- p.i / List of abbreviations --- p.ii / Abstract --- p.iii / Table of Contents --- p.vi / List of tables --- p.x / List of figures --- p.xii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Plant of interest --- p.1 / Chapter 1.2 --- Literature review --- p.2 / Chapter 1.2.1 --- Anthocyanins-natural pigments in plants --- p.2 / Chapter 1.2.1.1 --- Sources and biosynthesis --- p.2 / Chapter 1.2.1.2 --- Chemical properties --- p.2 / Chapter 1.2.1.3 --- Biological effects --- p.3 / Chapter 1.2.2 --- Characterization of anthocyanins --- p.4 / Chapter 1.2.3 --- Plant tissue and cell cultures --- p.6 / Chapter 1.2.4 --- Induction of anthocyanins in plant tissue culture --- p.7 / Chapter 1.2.5 --- Factors affecting anthocyanin production --- p.8 / Chapter 1.2.5.1 --- Plant hormones --- p.8 / Chapter 1.2.5.2 --- Nutrients --- p.9 / Chapter 1.2.5.2.1 --- Phosphate --- p.9 / Chapter 1.2.5.2.2 --- Nitrogen --- p.9 / Chapter 1.2.5.3 --- Osmoticums --- p.10 / Chapter 1.2.5.3.1 --- Sucrose --- p.10 / Chapter 1.2.5.3.2 --- Other factors --- p.10 / Chapter 1.3 --- Research objectives --- p.12 / Chapter 2. --- Materials and methods --- p.16 / Chapter 2.1 --- Plant materials --- p.16 / Chapter 2.2 --- Study of pigment formation at different developmental stages --- p.16 / Chapter 2.2.1 --- Cultivation of Vigna sinensis --- p.16 / Chapter 2.2.2 --- Sample collection --- p.16 / Chapter 2.2.3 --- HPLC analysis of pigmented vegetative tissues --- p.16 / Chapter 2.2.4 --- HPLC analysis of seed coats at different developmental stages --- p.17 / Chapter 2.3 --- Characterization of seed coat pigments --- p.17 / Chapter 2.3.1 --- Extraction of seed coats pigments --- p.17 / Chapter 2.3.2 --- Acid hydrolysis of anthocyanins --- p.17 / Chapter 2.3.3 --- High performance liquid chromatography --- p.18 / Chapter 2.3.3.1 --- HPLC system --- p.18 / Chapter 2.3.3.2 --- Analytical conditions --- p.18 / Chapter 2.4 --- Establishment of tissue culture system --- p.19 / Chapter 2.4.1 --- Aseptic plant stocks --- p.19 / Chapter 2.4.2 --- Shoot-tip cultures --- p.19 / Chapter 2.4.3 --- Callus initiation --- p.19 / Chapter 2.4.3.1 --- From seed coats --- p.20 / Chapter 2.4.3.2 --- From vegetative tissues --- p.20 / Chapter 2.4.3.3 --- Light and dark --- p.20 / Chapter 2.4.4 --- Optimization of callus growth --- p.21 / Chapter 2.4.4.1 --- Basal medium --- p.21 / Chapter 2.4.4.2 --- Combination of various plant hormones --- p.21 / Chapter 2.4.4.3 --- Basal salt --- p.21 / Chapter 2.5 --- Studies of anthocyanin production in hypocotyl callus cultures --- p.22 / Chapter 2.5.1 --- Effects of nutrients --- p.22 / Chapter 2.5.1.1 --- Nitrogen --- p.22 / Chapter 2.5.1.2 --- Phosphate --- p.22 / Chapter 2.5.2 --- Osmotic stress --- p.22 / Chapter 2.5.2.1 --- Sucrose --- p.22 / Chapter 2.5.2.2 --- Mannitol --- p.23 / Chapter 2.5.2.3 --- Sodium chloride --- p.23 / Chapter 2.5.2.4 --- Polyethylene glycol --- p.23 / Chapter 2.6 --- Studies of anthocyanin production in cell suspension cultures --- p.23 / Chapter 2.6.1 --- Effects of nutrients --- p.24 / Chapter 2.6.1.1 --- Nitrogen --- p.24 / Chapter 2.6.1.2 --- Phosphate --- p.24 / Chapter 2.6.2 --- Osmotic stress --- p.25 / Chapter 2.6.2.1 --- Sucrose --- p.25 / Chapter 2.6.2.2 --- Polyethylene glycol --- p.25 / Chapter 2.6.3 --- Effects of other factors --- p.25 / Chapter 2.6.3.1 --- Riboflavin --- p.25 / Chapter 2.6.3.2 --- pH --- p.26 / Chapter 2.7 --- Measurement of cell growth --- p.26 / Chapter 2.8 --- Estimation of anthocyanins --- p.26 / Chapter 2.9 --- Statistical analysis --- p.27 / Chapter 3. --- Results --- p.30 / Chapter 3.1 --- Study of pigment formation at different developmental stages --- p.30 / Chapter 3.1.1 --- General description --- p.30 / Chapter 3.1.2 --- HPLC analysis of developing seed coats and other vegetative tissues --- p.30 / Chapter 3.1.3 --- The relationship between pigment formation and seed development --- p.30 / Chapter 3.2 --- Characterization of seed coat pigments --- p.31 / Chapter 3.3 --- Establishment of tissue culture system --- p.43 / Chapter 3.3.1 --- Callus initiations from seed coats --- p.43 / Chapter 3.3.2 --- Callus initiations from vegetative tissues --- p.43 / Chapter 3.3.3 --- Optimization of callus growth --- p.43 / Chapter 3.3.3.1 --- Effects of NAA and BA --- p.43 / Chapter 3.3.3.2 --- Effects of basal medium and combinations of plant hormones --- p.44 / Chapter 3.3.3.3 --- Effects of basal salt --- p.44 / Chapter 3.4 --- Studies of anthocyanin production in hypocotyl callus culture --- p.54 / Chapter 3.4.1 --- Effects of nutrients --- p.54 / Chapter 3.4.1.1 --- Effects of total nitrogen --- p.54 / Chapter 3.4.1.2 --- Effects of phosphate --- p.54 / Chapter 3.4.2 --- Effects of plant hormones --- p.55 / Chapter 3.4.3 --- Osmotic stress --- p.55 / Chapter 3.5 --- Establishment of suspension culture system --- p.64 / Chapter 3.6 --- Studies of anthocyanin production in seed coat suspension cultures --- p.64 / Chapter 3.6.1 --- Nutrient effects on suspension cultures --- p.64 / Chapter 3.6.2 --- Osmotic stress on suspension cultures --- p.65 / Chapter 3.6.3 --- Effects of phosphate with high nitrogen --- p.65 / Chapter 3.6.4 --- Effects of riboflavin with high nitrogen --- p.66 / Chapter 3.6.5 --- Influence of pH with high nitrogen --- p.66 / Chapter 4. --- Discussion --- p.79 / Chapter 4.1 --- Anthocyanin in vegetative tissues and seed coats of Vigna sinensis --- p.79 / Chapter 4.2 --- Factors affecting callus initiation in Vigna sinensis --- p.81 / Chapter 4.2.1 --- Explant types --- p.81 / Chapter 4.2.2 --- Plant hormones --- p.82 / Chapter 4.2.3 --- Basal medium --- p.82 / Chapter 4.3 --- Factors affecting anthocyanin production in callus cultures derived from hypocotyls --- p.83 / Chapter 4.3.1 --- Nutrients --- p.83 / Chapter 4.3.2 --- Osmotic stress --- p.85 / Chapter 4.4 --- Factors affecting anthocyanin production in suspension culture derived from seed coats --- p.86 / Chapter 4.4.1 --- Nutrients --- p.86 / Chapter 4.4.2 --- Osmotic stress --- p.87 / Chapter 4.5 --- Comparison of anthocyanin production from natural source and plant tissue cultures of V.sinensis --- p.89 / Chapter 4.6 --- Further studies --- p.89 / Chapter 5. --- Conclusions --- p.91 / References --- p.93
|
3 |
The antiproliferative activity of hakmeitau bean (Vigna sinensis) extract.January 2004 (has links)
Lau Wing-Sze. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 131-149). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Abstract (Chinese version) --- p.iv / Table of Contents --- p.vi / List of Tables --- p.x / List of Figures --- p.xii / List of Abbreviations --- p.xiv / Chapter Chapter One: --- An overview of Vigna sinensis seeds / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Food and functional food --- p.2 / Chapter 1.3 --- Edible legumes as an important food --- p.4 / Chapter 1.4 --- Nutritional an extra-nutritional values of V. sinensis seeds --- p.5 / Chapter Chapter Two: --- Purification of phenolic antioxidants from V. sinensis seeds / Chapter 2.1 --- Introduction --- p.11 / Chapter 2.1.1 --- Reactive oxygen species and antioxidants --- p.12 / Chapter 2.1.2 --- Phenolic flavonoids --- p.15 / Chapter 2.2 --- Materials and Methods / Chapter 2.2.1 --- Chemicals and reagents --- p.24 / Chapter 2.2.2 --- Plant material --- p.25 / Chapter 2.2.3 --- Optimization and extraction of V. sinensis seeds constituents --- p.25 / Chapter 2.2.4 --- Chromatographic separation of phenolic components --- p.26 / Chapter 2.2.5 --- Determination of phenolic contents --- p.27 / Chapter 2.2.6 --- Determination of free radical scavenging ability using trolox equivalent antioxidant capacity (TEAC) assay --- p.28 / Chapter 2.2.7 --- Statistical analysis --- p.29 / Chapter 2.3 --- Results and Discussion / Chapter 2.3.1 --- Optimization on the extraction of V. sinensis seeds --- p.30 / Chapter 2.3.2 --- Extraction and fractionation of V. sinensis seeds constituents --- p.31 / Chapter 2.3.3 --- Yield of various V sinensis seed fractions --- p.31 / Chapter 2.3.4 --- Phenolic contents in various V. sinensis seed fractions --- p.32 / Chapter 2.3.5 --- Free radical scavenging abilities of various V sinensis seed fractions --- p.33 / Chapter Chapter Three: --- Effect of V. sinensis seed extract on high fat and cholesterol - feeding mice / Chapter 3.1 --- Introduction --- p.41 / Chapter 3.1.1 --- Cholesterol in bloodstream circulation --- p.42 / Chapter 3.1.2 --- "Relationship between LDL oxidation, atherosclerosis and coronary heart disease" --- p.43 / Chapter 3.1.3 --- Diet supplements with beneficial effects on preventing coronary heart disease --- p.44 / Chapter 3.2 --- Materials and Methods --- p.47 / Chapter 3.2.1 --- Chemicals and reagents --- p.47 / Chapter 3.2.2 --- Preparation of diets --- p.48 / Chapter 3.2.3 --- Animals --- p.48 / Chapter 3.2.4 --- Feeding experiments --- p.49 / Chapter 3.2.5 --- Post-feeding analysis --- p.50 / Chapter 3.2.5.1 --- Caecal content and health indices --- p.50 / Chapter 3.2.5.2 --- Serum triglycerides --- p.51 / Chapter 3.2.5.3 --- Serum total cholesterol --- p.52 / Chapter 3.2.5.4 --- High-density lipoprotein (HDL) cholesterol --- p.53 / Chapter 3.2.5.5 --- Low-density lipoprotein (LDL) cholesterol --- p.54 / Chapter 3.2.5.6 --- Hepatic lipid and cholesterol --- p.55 / Chapter 3.2.6 --- Statistical analysis --- p.55 / Chapter 3.3 --- Results and Discussion --- p.56 / Chapter 3.3.1 --- Food intakes and body weights of animals --- p.56 / Chapter 3.3.2 --- Caecal contents and health indices --- p.56 / Chapter 3.3.3 --- Effects of V sinensis seed extract on serum and hepatic levels of triglycerides and cholesterol --- p.57 / Chapter Chapter Four: --- Antiproliferative activities of V. sinensis seed extracts / Chapter 4.1 --- Introduction --- p.66 / Chapter 4.1.1 --- Cancer and antioxidant --- p.67 / Chapter 4.1.2 --- Dietary cancer prevention agents --- p.68 / Chapter 4.2 --- Materials and Methods --- p.71 / Chapter 4.2.1 --- Chemicals and reagents --- p.71 / Chapter 4.2.2 --- Cell lines --- p.71 / Chapter 4.2.3 --- Maintenance of cell lines --- p.72 / Chapter 4.2.4 --- Antiproliferation assays --- p.73 / Chapter 4.2.4.1 --- MTT assay --- p.73 / Chapter 4.2.4.2 --- BrdU assay --- p.73 / Chapter 4.2.5 --- Cytotoxic activity determined by lactate dehydrogenase (LDH) assay --- p.77 / Chapter 4.2.6 --- Time-course assay --- p.79 / Chapter 4.2.7 --- Determination of IC50 --- p.79 / Chapter 4.2.8 --- Statistical analysis --- p.79 / Chapter 4.3 --- Results and Discussion --- p.80 / Chapter 4.3.1 --- Antiproliferative activities of V. sinensis seed extracts on HepG2 cells --- p.80 / Chapter 4.3.2 --- Cytotoxic activities of V. sinensis seed extracts on HepG2 cells --- p.82 / Chapter 4.3.3 --- Antiproliferative activities of phenolic fraction on MCF-7cells --- p.83 / Chapter 4.3.4 --- Cytotoxic activity of phenolic fraction on MCF-7 cells --- p.84 / Chapter 4.3.5 --- Time-course study of antiproliferative activities of phenolic fraction on cancer cells --- p.85 / Chapter 4.3.6 --- Effect of phenolic fraction on normal cells --- p.86 / Chapter Chapter Five: --- Antioxidant and antiproliferative activities of selected content flavonoids from V. sinensis seeds / Chapter 5.1 --- Introduction --- p.93 / Chapter 5.1.1 --- Cell cycle progression and regulation --- p.94 / Chapter 5.1.2 --- Bioavailability of plant flavonoids --- p.96 / Chapter 5.1.3 --- Characterization of flavonoids in V. sinensis seed --- p.98 / Chapter 5.2 --- Materials and Methods --- p.102 / Chapter 5.2.1 --- Chemicals and reagents --- p.102 / Chapter 5.2.2 --- Determination of free radical scavenging ability of identified flavonoids from V sinensis seeds using trolox equivalent antioxidant capacity (TEAC) assay --- p.103 / Chapter 5.2.3 --- Antiproliferation assays --- p.104 / Chapter 5.2.4 --- Cytotoxicity assay --- p.104 / Chapter 5.2.5 --- Time-course assay --- p.104 / Chapter 5.2.6 --- Determination of cell cycle distribution by flow cytometry --- p.105 / Chapter 5.2.7 --- Statistical analysis --- p.106 / Chapter 5.3 --- Results and Discussion --- p.107 / Chapter 5.3.1 --- Free radical scavenging abilities of identified flavonoids from V sinensis seeds --- p.107 / Chapter 5.3.2 --- Antiproliferative activities of selected flavonoids on cancer cells --- p.109 / Chapter 5.3.3 --- Cytotoxic activities of selected flavonoids on cancer cells --- p.111 / Chapter 5.3.4 --- Time -course study of antiproliferative activities on cancer cells --- p.112 / Chapter 5.3.5 --- Cytotoxic activities of selected flavonoids on normal cells --- p.114 / Chapter 5.3.6 --- Determination of the effects of cyanidin on cancer cells by analyzing cell cycle pattern --- p.115 / Chapter Chapter Six: --- Conclusion --- p.128 / References --- p.131
|
4 |
Seedling vigour in winter grain legumes / by Jafar Kamboozia.Kamboozia, Jafar January 1994 (has links)
Bibliography: leaves 186-202. / xvii, 202 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 1994
|
5 |
Seedling vigour in winter grain legumesKamboozia, Jafar. January 1994 (has links) (PDF)
Bibliography: leaves 186-202.
|
6 |
Biochemical composition, protein quality and hypocholesterolemic effect of mature seeds of a pigmented Vigna sinensis cultivar.January 1999 (has links)
by Foo Wai Ting, Rita. / Thesis submitted in: August 1998. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 89-100). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Proximate Composition --- p.4 / Chapter 1.2 --- Amino Acid Composition --- p.6 / Chapter 1.3 --- Antinutrients --- p.11 / Chapter 1.3.1 --- Trypsin Inhibitors --- p.12 / Chapter 1.3.2 --- Phytate --- p.13 / Chapter 1.3.3 --- Tannins --- p.14 / Chapter 1.3.4 --- Lectins --- p.15 / Chapter 1.4 --- Two Dimensional Polyacrylamide Gel Electrophoresis --- p.17 / Chapter 1.5 --- Protein Digestibility --- p.19 / Chapter 1.6 --- Protein Quality --- p.22 / Chapter 1.7 --- Hypocholesterolemic Effects --- p.24 / Chapter 2 --- Materials and Methods --- p.36 / Chapter 2.1 --- Plant Material --- p.36 / Chapter 2.2 --- Sample preparation --- p.36 / Chapter 2.3 --- Proximate composition --- p.38 / Chapter 2.3.1 --- Protein --- p.38 / Chapter 2.3.2 --- Fat --- p.38 / Chapter 2.3.3 --- Carbohydrate --- p.38 / Chapter 2.3.4 --- Fiber --- p.38 / Chapter 2.3.5 --- Mineral --- p.39 / Chapter 2.3.6 --- Moisture --- p.39 / Chapter 2.4 --- Amino acid composition --- p.40 / Chapter 2.5 --- Antinutrients --- p.41 / Chapter 2.5.1 --- Trypsin inhibitors --- p.41 / Chapter 2.5.2 --- Tannins --- p.42 / Chapter 2.5.3 --- Phytate --- p.43 / Chapter 2.5.4 --- Lectins --- p.43 / Chapter 2.6 --- Two dimensional polyacrylamide gel electrophoresis --- p.45 / Chapter 2.6.1 --- Protein extraction --- p.45 / Chapter 2.6.2 --- IEF gel --- p.45 / Chapter 2.6.3 --- SDS gel --- p.46 / Chapter 2.7 --- Protein digestibility --- p.48 / Chapter 2.7.1 --- In vitro Protein digestibility --- p.48 / Chapter 2.7.2 --- True Protein digestibility --- p.49 / Chapter 2.8 --- Protein quality --- p.51 / Chapter 2.9 --- Hypocholesterolemic effects --- p.52 / Chapter 2.10 --- Statistical analysis --- p.55 / Chapter 3 --- Results --- p.56 / Chapter 3.1 --- Proximate composition --- p.56 / Chapter 3.2 --- Amino acid composition --- p.56 / Chapter 3.3 --- Antinutrients --- p.56 / Chapter 3.4 --- Two dimensional polyacrylamide gel electrophoresis --- p.60 / Chapter 3.5 --- Protein digestibility --- p.60 / Chapter 3.6 --- Protein quality --- p.60 / Chapter 3.7 --- Hypocholesterolemic effects --- p.62 / Chapter 3.7.1 --- Growth rate against day --- p.62 / Chapter 3.7.2 --- Health indexes --- p.64 / Chapter 3.7.3 --- Cholesterol content --- p.64 / Chapter 4 --- Discussion --- p.67 / Chapter 4.1 --- Proximate composition --- p.67 / Chapter 4.2 --- Amino acid composition --- p.70 / Chapter 4.3 --- Antinutrients --- p.74 / Chapter 4.4 --- Two dimensional polyacrylamide gel electrophoresis --- p.77 / Chapter 4.5 --- Protein digestibility --- p.79 / Chapter 4.6 --- Protein quality --- p.81 / Chapter 4.7 --- Hypocholesterolemic effects --- p.82 / Chapter 5 --- Conclusion --- p.88 / References --- p.89
|
7 |
Nutritional values of three leguminous seeds and functional properties of their protein and fiber fractions. / CUHK electronic theses & dissertations collection / Digital dissertation consortiumJanuary 1998 (has links)
by Cha Chi Fai. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (p. 139-154). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
|
8 |
Investigation of environmental staining and storage on discolouration and cooking quality in Faba bean (Vicia faba L.)Nasar-Abbas, Syed Muhammad January 2007 (has links)
[Truncated abstract] Faba bean (Vicia Faba L.) ranks third worldwide in overall production among coolseason legume crops and is used as a main source of protein both for food and feed purposes in many parts of the world. Australia is a major exporter of faba beans and the price received depends on the quality of the seed especially colour of the seed coat. Consumers don?t like faba beans that are dark coloured or that have blemishes on the seed coat. Environmental staining and storage discolouration deteriorate seed colour causing substantial economic losses to growers and grain handlers. To investigate the influence of environmental conditions, especially during pod/seed development and maturity, on the degree of environmental staining, field trials were conducted using four faba bean varieties (Fiord, Fiesta, Ascot and Cairo) in a range of environmental conditions under the Mediterranean-type climate of south western Australian grain belt. Although a majority of seeds had good colour but 3-25% were stained up to an unacceptable level across the trials and this varied with location and variety. Seeds formed later in plant development (located on the upper nodes of the plant) were more stained than seeds formed earlier (located on the lower nodes). This may be due to end of season environmental factors, such as high temperature and light intensity, and water and nutrient stress. Similarly seeds formed on small and weak plants, which may have developed under stressful conditions, had more staining than seeds formed on normal sized and healthy plants. Genotypic variation was also evident with Fiord showing greater staining than Ascot, Fiesta and Cairo. The cause of environmental staining appears to be complex but was associated with phenolic contents. Storage discolouration was influenced by a number of factors including temperature, seed moisture content, light and storage period and these were critical in determining storage life. ... Faba bean hardness, examined by the hard-to-cook test, also increased with increased storage temperature. There was a high negative correlation (r2 = 0.98) between storage temperature and cooking ability of faba bean. There was a three-fold increase in lignin content of faba bean stored at 50°C compared to those stored at 5°C and it was correlated with bean hardness (r2 = 0.98). Reduction in free phenolics was negatively correlated (r2 = 0.75) with bean hardness. The environmental staining in faba bean can be minimized with correct choice of varieties, robust agronomic practices to establish and maintain healthy plants and the use of mechanical graders and colour sorters. For minimizing storage discolouration faba beans must be dehydrated to ≤12% seed moisture content and stored in insulated bins (silos) or at least bins painted white and constructed under trees shades. In addition occasional flushing with N2 will further help reduce the colour darkening. The above approaches will improve quality, market opportunities, price and hence profitability of faba bean in the farming systems.
|
9 |
Hodnocení semenářských vlastností hrachoru lučního a vikve ptačí a jejich uplatnění v trvalých travních porostech. / The evaluation of seed properties of Lathyrus pratensis and Vicia cracca and their employment in permanent grasslands.KRATOCHVÍLOVÁ, Eva January 2015 (has links)
The theme of the thesis are climbing legumes meadow vetchling (Lathyrus pratensis) and tufted vetch (Vicia cracca). The literature search defines watched kinds of legumes and their occurence in permanent grassland. There is summarized seed growing of legumes because of its problematic production. Legumes are valuable components of grassland especially thanks to fixation of nitrogen and high capacity of proteins. The practical part is focused on observation of floristic compilation of watched locations for three years. Particular locations were compared from the point of view of changes in land management and weather. Pods and seeds of observed kinds were collected and evaluated in single years. Experiments of seed's field germination were done after different period from picking and in case of various treatment.
|
Page generated in 0.0397 seconds